
·~ -· 'tn-~;cHtj ··s··:·
SRAm

DA,r
IFcc TRUE, PC • nn

SRLm
DA, (IX+ d)

•... ~ •-- _.-,,ij

Cat. No. 26-2012

Custom Manufactured in USA by RADIO SHACK, A Division of TANDY CORPORATION

i ,

TERMS ANO CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT ANO SOFTWARE
, PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER , RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
I. CUSTOMER OBLIGATIONS

A. CUSTOMER assumes fu ll responsibil ity that this Radio Shack computer hardware purchased (the " Equipment "), and any copies of Radio
Shack software included with the Equipment or licensed separately (the "Sottware "J meets the spec1ficat1ons . capacity. capab il1t1es.
versatili ty , and other requ irements of CUSTOMER .

B CUSTOMER assumes full respons ibility for the cond 1t1on and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation

11. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A For a penod of ninety (90) calendar days from the date of the Rad io Shack sales document received upon purchase of the Equ ipment RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Sottware is stored is free from manufacturing
defects . THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RAD IO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS. RETAIL STORES AND FROM RADIO SHACK FRANCHISEES ANO DEALERS AT ITS
AUTHORIZED LOCATION The warranty is vo id if the Equipment's case or cabinet has been opened or 1f the Equipment or Sottware has been
subjected to improper or abnormal use . If a manufacturing defect is discovered during the stated warranty period. the defective Equ ipment
must be returned to a Rad io Shack Computer Center . a Radio Shack retai l store . part1cipat1ng Radio Shack franchisee or Radio Shack dealer
for repair , along with a copy of the sales document or lease agreement The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is limited to the correction of the defect by repair. replacemen t. or refund of the purchase price at RADIO SHACK 'S election and sole
expense . RADIO SHACK has no obligation to replace or repair expendable items

B RADIO SHACK makes no warranty as to the design. capability . capacity . or suitability for use of the Sottware. except as provided in this
paragraph. Software is licensed on an · AS IS" basis. without warranty . The original CUSTOMER'S exclusive remedy. in the event of a
Software manufacturing defect . is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software . The defective Sottware shall be returned to a Radio Shack Computer Center. a Radio Shack reta il store .
participating Radio Shack franchisee or Radio Shack dealer along with the sales document

C Except as provided herein no employee . agent . franch isee. dealer or other person is authorized to give any warranties of any nature on behalf
of RADIO SHACK

D. Except as provided herein , RADIO SHACK MAKES NO WARRANTIES. INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

E Some states do not allow limitations on how long an implied warranty lasts . so the above limitation(s) may not apply to CUSTOMER

Ill. LIMll'ATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK. INCLUDING. BUT NOT LIMITED TO. ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE " EQUIPMENT" OR "SOFTWARE ' IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS , OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE . LEASE . LICENSE . USE OR ANTICIPATED USE OF THE " EQUIPMENT" OR " SOFTWARE"

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES . RADIO SHACK 'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR " EQUIPMENT" OR " SOFTWARE"
INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in del ivering or furn ishing Equipment and or Sottware
C No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

atter the cause of action has accrued or more than tour (4) years atter the date of the Radio Shack sales document for the Equipment or
Software, whichever first occurs .

D. Some states do not allow the limitation or exclusion of incidental or consequential damages. so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive . paid-up license to use the RADIO SHACK Software on one computer. sub1ect to the following
provisions:
A. Except as otherwise provided in this Sottware License , applicable copyright laws shall apply to the Software
B. Title to the medium on which the Software is recorded (cassette and 'or diskette) or stored (ROM) is transferred to CUSTOMER . but not title to

the Software .
C. CUSTOMER may use Sottware on one host computer and access that Sottware through one or more terminals 1! the Software permits this

function.
D. CUSTOMER shall not use, make, manufacture. or reproduce copies of Sottware except for use on one computer and as is spec1f1cally

provided in this Software License . Customer is expressly prohibited from disassembling the Sottware.
E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in

the operation of one computer with the Sottware . but on ly to the extent the Sottware allows a backup copy to be made . However , for
TRSDOS Software , CUSTOMER is perm itted to make a limited number of additional copies for CUSTOMER 'S own use.

F. CUSTOMER may resell or distribute unmodi fied copies of the Sottware provided CUSTOMER has purchased one copy of the Sottware for each
one sold or distributed . The provisions of this Sottware License shal l also be applicable to third parties receiving copies of the Sottware from
CUSTOMER .

G. All copyright notices shall be reta ined on all copies of the Software

V. APPLICABILITY OF WARRANTY

A The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to
CUSTOMER .

B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK . the author. owner and or licensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights . and the original CUSTOMER may have other rights which vary
from state to state .

875-9186

ALDS
Assembly Language
Development System

TRSDOS®Version 6 Operating System: Copyright 1983 Logical Systems.
All Rights Reserved. Licensed to Tandy Corporation.

ALEDIT Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

ALASM Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

ALBUG Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

ALLINK Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

ALTRAN Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

TRS-80® Assembly Language Development System Manual: Copyright 1982, 1983
Tundy Corporation. AU Rights Reserved.

Reproduction or use without express written permission from Tandy Corporation
portion of this manual is prohibited. While reasonable efforts have been taken in
preparation of this manual to assure its accuracy, Tandy Corporation assumes no lia
bility resulting from any errors or omissions in this manual, or from the use of the
information obtained herein.

TRSOOS is a registered trademark of Tandy Corporation.

W 9 8 7 6 5 4 3 2

INTRODUCTION

To Our Customers,
This Assembly Language Development System (ALDS) is a powerful tool for
developing Z80 "'½'JE1fa.rr.:-nn.s for the TRS-80 Models III and 4.

It contains five systems:

ALEDIT, a Text Editor, for writing and editing source programs.

ALASM, an Assembler for converting source programs to Z80 object code. The
Assembler contains more than:

• 50 powerful directives. Among many features, they allow you to build
relocatable program sections, macro sections, index sections; generate a length
byte for text storage; and control the assembly listing format.

• 30 arithmetic, logical and relational operators.
• 10 ''extended'' Z80 mnemonics, which expand into an entire group of Z80

mnemonics.

ALLINK, a Linker, for linking relocatable program sections into absolute object
files.

ALBUG, a Debugger, for debugging a program in memory or altering a file on
disk. ALBUG is comprised of six program files: ALBUG, ALBUG/SYS,
ALBUG/OVL, ALBUGX, ALBUGRES/REL and ALBUG/RES.

ALTRAN, a File Transfer System, for transferring a file between the Models I,
II, III, 4, 12 and 16.

Note: Models I, II, 12 and 16 require the Model II ALDS package.

MODEL 111/4 ALDS

About This Manual
This manual assumes you already know Z80 assembly language programming
and have used an editor/assembler. It contains three sections:

Section I, Using ALDS, begins with a sample session which shows how to
create a modular program for the Models III and 4 using all five systems.
Following this session are reference chapters on each system.

Section II, ALDS Assembly Language, references the source language
acceptable to the ALDS Assembler. Chapter 7 outlines the syntax for writing
source lines. The remaining chapters reference all the directives, Z80
mnemonics, and extended Z80 mnemonics available.

Section III, Error Messages, lists the error messages that may be generated by
the ALDS programs.

If you are new to Z80 assembly language programming, we suggest you read:

More TRS-8(J) Assembly Language Programming by William Barden, Jr. (Radio
Shack Catalog Number 62-2075)

Note: Before going any further, please make a backup of your ALDS diskette.
See your system's owners manual for instructions on making backups.

Notation Key
The manual uses these notational conventions:

Dot Mat r ix to represent what you will see on the screen or should type.

(KEY)

italics

H

$

filespec

ii

to represent a specific key you should press.

to represent a value you should specify.

to represent a hexadecimal number. (For example, 4233H
represents the hexadecimal number 4233 .)

to represent the current value of the Assembler's location counter.
(This is actually a convention of the Assembler.)

to represent a valid TRSDOS file specification. (See your
TRSDOS manual for a definition of filespec.)

Section I/
UsingALDS

SAMPLE SESSION

INTRODUCTION

Contents

Section I/ Using ALDS
Chapter 1 I Sample Session . 3
Chapter 21 The ALDS Editor 11
Chapter 31 The ALDS Assembler.. 23
Chapter 41 The ALDS Debugger 29
Chapter 51 The ALDS Linker.. 43
Chapter 61 The ALDS File Transfer System................................... 47

Section II/ ALDS Assembly Language
Chapter 71 Assembly Language Syntax 61
Chapter 8/ Directives... 69
Chapter 9 / Z80 Mnemonics . 115
Chapter 10/ Extended Z80 Mnemonics . 303

Section III/ Error Messages
Error Messages ... 325

Appendices
Appendix Al Undocumented Z80 Instructions 333
Appendix Bl ALDS Object Code Format. 338
Appendix Cl Numeric List of Z80 Instruction Set 341
Appendix DI Alphabetic List of Z80 Instruction Set . 34 7
Appendix El Z80 Hardware ... 353

Tables
Table 1/ ALEDIT Command Mode Keys...................................... 13
Table 2/ ALEDIT Editor Commands . 14
Table 31 ALEDIT Insert Control functions.................................... 20
Table 41 ALEDIT Insert Mode Special Keys.................................. 21
Table 51 ALEDIT Line Edit Mode Subcommands............................ 21
Table 61 ALEDIT Line Edit Mode Special Keys . 22
Table 7 I ALASM Switches. 24
Table 81 Debugger Commands . 34
Table 9/ Baud Rate Change Table . 48
Table 10/ Operators . 64
Table 11/ Complex Expressions Allowing Relocatable or External Symbols 66

iii

SAMPLE SESSION

Chapter 1/
Sample Session
This manual is not a tutorial. To learn Assembly Language, see your computer
dealer for information on helpful books.

This chapter is for those of you who want to try a session using the entire ALDS
package. It demonstrates how to link separate program sections for the Models
III and 4.

This session is for demonstration only. To find out how and why each system
works the way it does, you will need to refer to specific chapters in this manual.

Note for Model 4: If at any time during this procedure you receive the message,
"File Already Open;' type:

RESET filename

This command closes the open file.

Creating a Source File
In this session, you need to create five source program files. To do this, use the
ALDS Editor. In the TRSDOS Ready mode, type:

ALED IT (ENTER)

this loads the ALDS Editor. After it displays its heading, type:

I

the insert command (Do not press (ENTER)). The Editor clears the screen and
prints NONAME/SRC in the upper right-hand corner. You are now in the insert
mode and can insert the first source program.

1. Main Program
To insert the first program, named MAIN, type the following commands (press CI)
between columns; press CEHIEB) at the end of each line.):

MAIN PSECT
PUBLIC BEGIN
EXTERN PRINT,TRSDOS

BEGIN LD HL,MSG1
CALL PRINT ;Print Line MSG1
LD HL,MSG2
CALL PRINT ;Print Line MSG2
JP TRSDOS

3

MODEL 111/4 ALDS

MSG1

MSG2

DEFT
DEFB
DEFT
DEFB
END

1 YOU WILL BE ABLE TO LINK THIS'
00H
'AS EITHER A MODEL III OR 4 PROGRAM'
00H
BEGIN

When you are finished press (BREAK). This puts you in the Editor command mode.
If you made mistakes, you can use the Editor commands to edit the program.
They are all listed in Chapter 2, The ALDS Editor.

After pressing (BREAK), save this source program on disk by typing this Editor
command:

W MA IN (ENTER)

this saves the program as a source file named MAIN/SRC. (The Editor changes
the top right-hand comer display to MAIN/SRC.) Clear the edit buffer by typing:

K CEJflifl)

the kill command and answer Y (ENTER) to the prompt. The screen will then clear.

Now repeat the same procedures for inserting and saving MOD4, MODIII,
PROG4, and PROGIII. (If you have a Model 4, insert all of these programs on
your Model 4-even MODIII and PROGIII. Otherwise, insert all of these
programs on your Model III.)

2. MOD4 Program
MODll PSECT

PUBLIC
@DSPLY EQU
@E>{ IT EQU
PRINT INC

SVC
RET

TRSDOS LO
JP
END

3. MODID Program
MODI II PSECT

PUBLIC
VDLINE EQU
JP2DOS EQU
PRINT INC

CALL
RET

TRSOOS JP
END

4

;Model ll Print Routines
PRINTtTRSDOS
10
22
HL
@OSPLY

HLt0

rnisPla}' Line

@EXIT ;Exit

;Model III Print Routines
PRINT,TRSDOS
021BH
402DH
HL
VDLINE rnisPlaY Line

JP2DOS

SAMPLE SESSION

4. PROG4 Program
PROG4 PSECT ;Model 4 Linkinf Profram

EXTERN BEGIN
START JP BEGIN

LINK 'MAIN/REL' ;Links Main Prof ram
LINK 'MOO4/REL' ;unKs Print Routines
ENO START

5. PROGID Program
PROGIII

START

PSECT
EXTERN
JP

;Model III LinKinf Profram
BEGIN
BEGIN

LINK 'MAIN/REL' ;Links Main Profram
LINK 'MOOIII/REL' ;Links Print Routines
ENO START

When you have finished inserting all five source files, exit the Editor by typing:

Q (ENTER)

which returns you to TRSDOS Ready.

Assembling a File
You should now have stored five source files:

MAIN/SRC
MOD4/SRC
MODIII/SRC
PROG4/SRC
PROGIII/SRC

To see that they are all on your diskette, check the disk directory by typing
DIR (ENTER).

These files contain three types of instructions:

• Z80 mnemonics (LD, CALL, INC, and RET), which the Assembler converts
into Z80 object code. Chapter 9 describes Z80 mnemonics.

• An extended mnemonic (SVC), which the Assembler converts into a group of
Z80 instructions. Chapter 1 (/) describes extended mnemonics.

• Directives (PSECT, EXTERN, DEFf, PUBLIC, EQU, LINK and END), which
are instructions to the Assembler or the Linker. Chapter 8 describes directives.

To assemble the source files, use the ALDS Assembler (ALASM). In the
TRSDOS Ready mode, type:

ALASM MAIN/SRC MAIN/REL (ENTER)

5

MODEL 111/4 ALDS

The assembler processes the source file MAIN/SRC into an object file named
MAIN/REL. If it displays any errors, edit or re-insert MAIN/SRC and re
assemble it. (An explanation of the Assembler error messages is in the Error
Messages Section of this manual.)

You can assemble the other source files in the same way.

Note: You can omit the /SRC and /REL extensions. The Assembler knows to
append them:

ALASM MOD4 MOD4 CENTER)
ALASM MOD I I I MOD I I I (ENTER)
ALASM PROG4 PROG4 {ENTER)
ALA SM PROG I I I PROG I I I (ENTER)

When finished, the Assembler produces these object files:

MAIN/REL
MOD4/REL
MODI II/REL
PROG4/REL
PROGIII/REL

The extension REL means that the files are relocatable. That is, they do not have
absolute load and execution addresses. Because of this, they cannot be loaded
and executed in their present form.

The Assembler converts them into relocatable rather than absolute files because
of the PSECT directives. See Chapter 8 for more information on the directives.
See Chapter 3 for information on operating the Assembler.

Linking a Relocatable File
Two of the relocatable files created by the Assembler are:

PROG4/REL
PROGIII/REL

which consist solely of LINK directives. They are for the ALDS Linker to
process. Type:

ALLINK PROG4/REL PROG4 $=521lllll (ENTER)

This causes the Linker to:

(1) process the LINK directives, LINKing MAIN/REL and MOD4/REL to
PROG4/REL.

(2) assign absolute addresses beginning with 5200H to PROG4/REL.

(3) save the resulting absolute object code PROG4.

You can link PROGIII/REL in the same way. (Notice that you can optionally omit
the /REL extension, since the Assembler will automatically append it.) Type:

ALLINK PROGIII PROGIII $=521lllll

6

SAMPLE SESSION

Using the same processes as above, the Linker creates PROGIII, an absolute
object file, composed of MAIN/REL and MODIII/REL.

Chapter 5, The Linker, discusses the Linker itself. Chapter 8, Directives,
discusses the directives which control the Linker.

Executing a File
The Linker created two absolute object files:

PROG4/CMD
PROGIII/CMD

which are actually two versions of the same main program. PROG4/CMD runs
on the Model 4; PROGIII/CMD is for the Model III. (Model III and 4 executable
programs must have the /CMD extension.)

Assuming you created these files on the Model 4, if you wish to run PROG4/
CMD on your Model 4, simply type (in the TRSDOS Ready mode):

PROG4 CENTER)

Transferring a File
You will, of course, need to transfer the program which does not correspond with
your computer to the model in which it can be used, before you can execute it.
For example, if PROGIII was created on the Model 4, it would need to be
transferred to the Model III. If you have a Model III and 4 and an appropriate
modem or cable, you can transfer the program with the ALDS File Transfer
System. It will produce a Model III or 4 disk file of PROGIII/CMD or PROG4/
CMD.

To transfer PROGIII/CMD to a Model III, use the following instructions:

Connect the two systems (see Chapter 6, The ALDS File Transfer System for
instructions).

Load the ALTRAN program on both the Model III and Model 4 by typing:

AL TRAN (ENTER)

After ALTRAN displays its menu, type:

8 (ENTER)

This puts you in the 'Mini-Terminal' mode. To test the communication of your
computers, on your Model 4 type:

COMMUNICATION

7

MODEL 111/4 ALDS

This word should appear on your Model III screen as well as your Model 4
screen. Next on your Model III type:

TEST

This word should also appear on your Model III screen and your Model 4 screen.
If both computer screens have "COMMUNICATION TEST" written on them,
then ALTRAN is communicating in both directions. Otherwise, recheck your
connection procedure (see Chapter 6, The ALDS File Transfer System).

Press the ~ key on both the Model III and 4 to return to the ALTRAN menu.

On the Model 4 type:

1 CENIEID
PROG I I I/ CMD (ENTER)

and on the Model III type:

2~
PROG I I I/ CMD (ENTER)

This transfers PROGIII/CMD to the Model III diskette and names it PROGIII/
CMD.

ALTRAN re-displays its menu when it has finished the transfer. Press CBBE!K) or (ID
to exit the ALTRAN program and return to TRSDOS Ready. You can then
execute PROGIII on the Model III in the same way PROG4 was executed on the
Model 4 above. Type:

PROG I I I (ENTER)

Debugging a File
You can debug any of the object files with the ALDS Debugger on the Models III
and 4. On your Model III type:

LOAD PROGIII/CMD CENIEID
AL8UG (ENTER)

You can now debug PROGIII/CMD by entering:

J

On your Model 4 type:

LOAD PROG4/CMD (ENTER)
ALBUG

You can now debug PROG4/CMD by entering:

J

8

Answer the corresponding prompt with the following response:

Model III:

J CADRH t6P1 H ,6P2H ,6P3H ,6P4J E>? 5288,52H (ENTER)

Model 4:

J CADRH ,6P1 H ,6P2H ,6P3H ,6P4J <E>? 5288,5288 (ENTER)

You can now single step through the program by pressing CE).

For more information on ALBUG, refer to Chapter 4.

SAMPLE SESSION

9

a

a

LANGUAGE

Chapter 2/

The ALDS Editor (ALEDIT)

The ALDS Editor allows you to enter and edit an assembly language source
program. You can save this program on disk as a source file to be assembled into
280 object code.

This section describes the use of the Editor itself. For information on how to
write an assembly language source program, see Section II, "ALDS Assembly
Language:'

Loading the Editor
This command, typed in the TRSDOS Ready mode:

ALEO IT source filespec

loads the Editor and then loads the specified source file spec into the Editor.
The source file spec is optional. For example:

ALEO IT (ENTER)

causes the Editor to load and display a similar heading:

TRS-80 Model 4 Text Editor tJersion v.r.p.
CoPYrifht (c) 1982, 83 Tandy CorP+

(v.r.p. is the version, release and patch numbers.)

ALEOIT SORTER (ENTER)

causes the Editor to load, display the above heading, then load a source file
named SORTER/SRC.

If the source filespec does not contain an extension, the Editor appends /SRC
to it.

The Editor loads into all of the memory above TRSDOS. It reserves
approximately the top 33K bytes in a Model III and the top 40K bytes in a Model
4 as an "edit buffer" for inserting your programs. However, if you have also
loaded one of the High Memory TRSDOS utilities the edit buffer will be smaller.

EDITOR

11

MODEL 111/4 ALDS

Using the Editor
following pages define the three modes in which you can use the Editor:

• the command mode

• the insert mode

• the edit mode

The Command Mode

When you first load the Editor, it is in the command mode. While in this mode,
you can use any of the special keys listed in Table 1 or the commands listed in
Table 2.

All commands except I and E return to the command mode after executing. To
return to the command mode from I (insert mode) or E (line edit mode), press

or (ENTER) respectively.

When you enter an Editor command, it creates a blank "work line" and points to
the line just beneath it. To redisplay the screen after an error message and delete
the work line, use the N command.

Sample Use

For an example of using the command mode, use the I command to insert this
program:

;THIS IS THE FIRST LINE (ENTER)
HH IS IS THE SECOND (ENTER)
; AND HERE IS ANOTHER (ENTER)
;AND ANOTHER (ENTER)

END (ENTER)

Press (BREAK) to return to the command mode.

You can move the cursor and rearrange the lines of the program. For example
type the following Editor command:

T

the cursor moves to the top of the text. Type B to move it to the bottom. Press ~
and ~ to move it to specific lines.

Move the cursor to the third line and type:

1

The < appears to the left of the line. This specifies the beginning of a block.
Move the cursor to the fourth line and type:

2

12

The > appears to the left of the line. This specifies the last line in the block.
Move the cursor up to the second line and type:

0

which is the O command. This copies the block between the first and second
line. Move the cursor to the next to last line and type:

D

delete command (executes without pressing CEH'.IIB)). The last line is now deleted.

To save this program on disk you can use the W command. Type (it does not
matter which line the cursor is positioned at):

W TEST (ENTER)

This saves this program on disk as a file named TEST/SRC. You can exit the
Editor by typing:

Q (ENTER)

the quit command.

Q will exit the Editor without writing the text to disk. If you forgot to save the
text first, type ALEDIT * (ENTER) to re-enter the Editor. Your text will be
retained.

Be sure you use the ALEDIT * command immediately after you exit the Editor.
It will not work predictably after you run a command which modifies memory.
Also, be sure you type one blank space between ALEDIT and the asterisk(*).

Table 1 / ALEDIT Command Mode Keys

Model 4 Model Ill
Keys Description Keys

m moves the cursor one position to the m
left.

~ positions the cursor down one line ~
(ignored if the cursor is not in the first
column)

~ positions the cursor up one line ~
(ignored if the cursor is not in the first
column)

{CTRUOO positions the cursor to the top of the (SHIFT)~(ID
screen.

(CTRU(ID positions the cursor to the bottom of (SHIFT)~©
the screen or to the first line after the
last line of text.

(:) displays the current line sequence
number. This number will change as
you insert and delete lines.

EDITOR

13

MODEL 111/4 ALDS

14

#lineCEBIEB)

current line

positions the cursor to the specified
line sequence number and moves
that line to the top of the screen.

cancels any command being
executed and returns to the command
mode.

cancels the current command line if
you have not yet pressed (ENTERl.

Table 2/ ALEDIT Editor Commands

Description of Terms

the line where the cursor is currently positioned.

de/

#/ine(ENTERJ

(stands for delimiter) One of the following characters which marks the
beginning and ending of a string:
!"#$%&'()* + ,-./:;< = >?

string
one to 37 ASCII characters on the Model 4 and one to 29 ASCII characters
on the Model Ill.

text
the source program or text currently in RAM.

ACEJfl'.E]J)
Re-executes the last executed command. This command only works with the
Editor Commands C, F, X, L and W.

B
Moves the cursor to the bottom of the text.

C de/ string1 de/ string2 de/ occurrence CEJflIB)
Changes string1 to string2 for the number of occurrences you specify.
Occurrences must range from 1 to 255. The changes begin at the current
line and are made only to the first occurrence on a given line.

If you omit occurrence, only the first occurrence of string1 is changed. You
may specify occurrence with an asterisk, in which case the change is made
to the first occurrence of string1 in all the remaining lines.

For example:

C/TEXT/FI LE/3 CEJflIB)

changes the first 3 occurrences of TEXT to FILE.

C?TEXT?FILE?* (ENTERJ

changes all occurrences of TEXT to FILE. (Change acts on only the first
occurrence within a line.) After executing the command, the cursor positions
itself at the last change or, at the top of the file if changes went through the
whole file.

D
Deletes the current line or block of lines. To delete a block, position the
cursor at the first line in the block and type (I). Then position it at the last line
and type the D command. (The block may be on several pages.) The cursor
must be positioned on a line within the file.

For example:

CID

LD
ADD
ADD
ADD
DEC

A,B
A,1
A,3
A,4
B

deletes all but the following:

LD A,B
DEC B

You can cancel a block deletion after pressing (I) but before typing D. To do
this, press@.

E
Allows you to edit the current line using line edit mode subcommands. The
line will appear in reverse video (Model 4 only). See the edit mode for a
listing of subcommands.

F de/ string del occurrence (ENTER)
Finds the specified occurrence of string. If you omit occurrence, finds the
first occurrence of string. If you omit string, the last string specified is found.
Occurrences must range from 1 to 255. For example:

F/TEXT/2 (ENTER)

finds the second occurrence of TEXT.

F/TEXT/ (ENTER)

finds the next occurrence of TEXT.

F (ENTER)

finds the next occurrence of the last specified string.

F% % (ENTER)

finds the next occurrence of five blank spaces. The Editor will search for only
one occurrence of the string in each line.

EDITOR

15

MODEL 111/4 ALDS

16

G cmEltl
Deletes all text from the current line to the end. You will first be prompted
with:

"Are you sure?"

Type Y cmEltl to delete; N cmEltl to cancel.

H cmEltl
Prints the entire text if entered as the first command or the specified block on
the printer. To print a block, move the cursor to the first line of the block and
type (I). Move the cursor to the last line of the block and type®· For
example:

LO
ADD
ADD
ADD
DEC

A,B
A,1
A,3
A,4
B

prints a block of ADD instructions.

You can cancel a block printing after pressing (I) but before typing H. To do
this, press @.

Press {BREAK) to terminate printing. If the printer is off-line or goes off-line
during printing, some characters may be lost.

Enters the insert mode for inserting lines just before the current line. See
"Insert Mode" for more information.

J
Displays current size of text and how much memory remains. Memory size
does not include a small work area when the buffer is full, but the text size
may reflect some of this work area.

KCEBIEID
Deletes ALL text. (Does not delete text from the disk file, only from the edit
buffer. Before deleting your text, the Editor will ask you "Are you sure': Type Y
CEllEID to execute the command; N CEBIEID to not execute it.

L fllespec $C (ENTER)
Loads filespec into the Editor. $C is optional. If specified, the Editor chains
the new filespec to the end of the text currently in memory. If not specified,
the new filespec overlays the current text.

For example:

L TEST(EffllB)

loads TEST/SAC into the Editor.

L TEST $C CEHIEB)

chains TEST/SAC to the end of the text currently in memory.

The Editor will load fixed length record (FLA) files with a record length of
one. If the file is fixed length, each line must be ended with a carriage return.

Note: When the Editor completes, the record length will be 256.

M
Moves the specified block just ahead of the current line. Use (I) and (2)
to specify the block. The Editor displays a line count as it moves each line.
For example:

ADD A,B
(I) PUSH DE

PUSH HL
PUSH IV

(2) PUSH BC
LO A,8

00 ADD A,10

moves the block of PUSH instructions just ahead of the last line:

ADD A,B
LO A,8
PUSH DE
PUSH HL
PUSH IV
PUSH BC
ADD A,10

You can cancel the block after specifying it but before typing M. To do this,
press@.

N
Updates the display. You might want to use this after executing the J
command or cancelling the G command.

0
Copies the specified block just above the current line. (Use (I) and (2)
to specify a block as described in the M command.)

p
Moves the cursor to the next page (which is 24 lines from the top of the
screen on the Model 4 and 17 lines on the Model Ill).

QCEfmID
Exits the Editor. If you forgot to save the file first, type ALEDIT * CEflIEB)
immediately upon exiting the Editor. The Editor will load with your text
retained in memory.

EDITOR

17

MODEL 111/4 ALDS

18

R CEfmB)
Deletes the current line and enters the insert mode. Using the J command, if
there is 0000 memory left in the buffer, executing the R command will delete
the line but will not allow it to be replaced with new text.

T
Moves the cursor to the top of the text.

u
Moves the cursor to the previous page (which is the 24 preceding lines for
Model 4 and 17 lines for Model Ill).

V
Scrolls current line to the top of the screen.

W filespec $option 1 ... (ENTER)
Saves all text on disk as filespec. filespec is optional; if omitted, it is the
filespec you used to load the file. The Editor appends /SAC to filespec
unless it already includes an extension.

The options are:

E

L, ML, OR LM

M

For example:

W SAMPLE (ENTER)

Exits the Editor after saving the file unless there is an
error.

Saves the file with line numbers in this format: ASCII
line number/dummy TAB/text.

Saves the file as a (ixed length record (FLA) file with a
LAL of 256 in this format:

text/carriage return

This option is the default. You can use ALEDIT to edit
a "DO-file" created with the TRSDOS "BUILD"
command and save this format, which can be loaded
by the TRSDOS "DO" command.

saves all text as a file named SAMPLE/SAC.

WSAMPLE$E

saves text as SAMPLE/SAC. The Editor will exit back to TRSDOS Ready
after saving the file.

Without using the L or the M options, the Editor saves the file in the format
required by the ALDS Assembler:

• Each character is saved exactly as it appears on the display.

• No carriage returns or end of text code is saved.

• Each line is saved in this format: length/text/

X del string1 del string2 del occurrence

Same as the C command, but prompts before making the change.
Occurrence must range from 1 to 255.

The Insert Mode

The I command gets you into the insert mode. Type:

(Do not press (ENTER).) The editor clears the screen and positions the cursor at the
upper left-hand corner. You can now insert source lines into the edit buffer.

Do not use line numbers. The Assembler will consider them syntax errors.

Each source line may have up to 78 characters. After typing the line, press
(ENTER) to insert it. To cancel it and return to the Editor command mode, press
(BREAK). For example:

;THIS IS THE FIRST LINE (ENTER)
HH IS IS THE SECOND (ENTER)
; AND HERE IS ANOTHER (BREAK)

inserts only the first two lines in the Editor's memory; then returns to the Editor
command mode.

While inserting lines, you might find it convenient to use the W key. This key is
used as a tab key. The Editor has tabs set every eight columns.

The Editor offers certain control functions for quick insertion. To activate a
control function, press the (CTRL) on the Model 4 or (SHIFT) 8 on the Model III,
at the same time you press the function key. For example, pressing these keys at
the same time:

Model 4: (CTRL)(ID
Model III: (SHIFT)8(ID

causes the Editor to insert a semicolon and the current date in the text and then
position the cursor on the next line.

Model 4: (CTRL)([)
Model III: (SHIFT)8([)

causes the Editor to insert'':'', tab to the next tab stop, insert ''EQU': and then
tab again to the next tab stop.

If the line becomes full while inserting the control function, the Editor stops and
awaits the next insert mode instruction.

EDITOR

19

MODEL 111/4 ALDS

Table 3 lists all the insert control functions.

Table 4 lists the special control keys available in the insert mode.

Note: When the edit buffer is full, it will give you a buffer full message and
return to the command mode.

Table 3/ ALEDIT Insert Control Functions

Model 4 Model Ill
FUNCTION INSERTS FUNCTION

~CID ;current date (ENTER) (lHif!)8([J
(i.e. ;02/25/83 ~)

(CTRLJ([) :(JJEQU(JJ (SHIFTl8([)

(CTRL)(ID CU GLOBAL CU (SHIFT)8(ID

Ck[IID([) CU INCLUDE CU' (SHID)8([)

CCIIDJOO ; CU ENTRY: W {SHIFTJ8(Jf)

(ml)(ID { (open braces) (SHIFTJ8@

(CJJ[[)(f) CU PUBLIC(U (lHif!)8®

(rnDJ(ID } (closed braces) (SHIFT)8(ID

~CID ;(UEXIT:(U ~8®

(CTRL)(l) ·************ ... (OOEID (SHID)8(l)
'
(semicolon followed by 64 asterisks)

([l]I)(l) A

(SHIFTJ8(l)

CC!mJ(ID ;(UUSES:(U (SHIFTl8@

~00 [(SHIFTJ800

crnuJOO (UEXTRNCU (SHIFTJ800

cc.nruoo displays the tab positions. Nothing is (SHIFTJ8(Y)
inserted.

~CZ) ;----- ... (ENTER) (SHIFTJ8(Z)
(semicolon followed by 64 dashes)

crnK)(1HID)(f) - (SHIFTJ8(ID

~(:)] (SHIFTJ8G

20

CI)

Table 4/ ALEDIT Insert Mode Special Keys

moves cursor back one space and deletes a character

ends current line, carriage return, and goes to next line still in
"I" mode. Note: (ENTER) inserts a blank line if executed by itself.

cancels current line, and returns to CMD-mode with the cursor
on the next line.

moves to next tab position on the line. Note: CI)will reverse
tab.

The LINE EDIT MODE
The E command enters the line edit mode for editing characters within the
current line. When you enter this mode, the Editor displays the line in reverse
video on the Model 4 only. You can then use any of the edit subcommands listed
in Table 5 or the special edit keys listed in Table 6.

For example, assume the cursor is on the following line:

;THIS IS THE FIRST LINE

To change the word FIRST to THIRD from the command mode, type:

E

(Do not press (ENTER).) The Editor will display the line in reverse video (Model 4
only). You are now in the line edit mode.

Use the (SPACEBAR) to position the cursor at the Fin FIRST and type:

5CTH I RD (ENTER)

This stores the change and returns to the Editor command mode.

COMMAND

A

nCstring

nD

E

Hstring

Table 5/ ALEDIT Line Edit Mode Subcommands

DESCRIPTION

Clears all changes and re-enters the edit mode for the
current line.

Changes the next n characters to the specified string. If n
is omitted, only one character is changed. (Press (SHIFTl~
to exit the change early.)

Deletes n characters. If n is omitted, one character is
deleted.

Exits the edit mode and stores changes.

Deletes the remaining characters, enters the insert mode
and allows you to insert a string.

EDITOR

21

MODEL 111/4 ALDS

lstring

nKcharacter

L

Q

nScharacter

Xstring

Allows you to insert material beginning at the current
cursor position on the line. Pressing m will delete
characters from the line. The line may be up to 78
characters in length on the Model 4 and 61 characters
in length on the Model 111.

Kills all characters preceding the nth occurrence of the
character.* If n is omitted, the first occurence is used. If
no match is found, the rest of the line is killed.

Moves cursor to beginning of line.

Quits the edit mode, cancelling all changes.

Positions the cursor at the nth occurrence of character.* If
no match is found, positions the cursor at the end of the
line.

Moves the cursor to the end of the line, enters the insert
mode, and allows you to insert a string.

*The compare begins on the character following the current cursor position.

22

(SPACEBARl

CIHirn~

cu

Table 6/ ALEDIT Line Edit Mode Special Keys

Moves cursor one position to the right.

Returns to edit command mode from the I, X, C, or H
subcommands.

Moves cursor to next tab position (or the end of the line)
while in the I, X, or H subcommand mode.

Moves cursor one position to the left.

Identical to the E subcommand.

Chapter 3/
The ALDS Assembler
(ALASM)
The ALDS Assembler produces Z80 object code. It does this by inputting a
source file - composed of Z80 instructions, assembler language directives, and
data- and assembling it into Z80 code.

In this Section, we'll show how to use the Assembler. For information on the
source file, see the sections on the ALDS Editor, Assembler Language
Directives, and Z80 Instruction Set.

The Assembler Command
This command, typed in the TRSDOS Ready mode, loads and executes the
Assembler:

ALASM filespecl filespec2 {switches}

filespecl is the source file you want assembled. If you do not specify an
extension, the Assembler assigns it the extension !SRC.filespecl must not be
read protected. Do not specify a password.

filespec2 is optional. It stores the assembled object code. You can specify
filespec2 with an asterisk(*). If so, the Assembler assigns itfilespecl's name
(less the extension).

If the program is relocatable andfilespec2 does not have an extension, the
Assembler assigns it the extension /REL. (The Assembler uses the PSECT
directive, discussed in Chapter 8, to determine whether the program is absolute
or relocatable.)

filespec2 overrides any OBJ directive you have in your program.filespecl and
filespec2 must be in the standard TRSDOS filespec notation.

Examples:

ALASM TEST TEST (ENTER)

assembles TEST/SRC and saves the object code as TEST if the program is
absolute or TEST/REL if it's relocatable.

ALASM TEST* (ENTER)

does the same.

ASSEMBLER

23

MODEL 111/4 ALDS

ALASM TEST/PAY* (ENTER)

assembles TEST/PAY and saves the object code as TEST or TEST/REL.

ALASM TEST/PAY FILE/ACC (ENTER)

assembles TEST/PAY and saves the object code as FILE/ACC.

ALASM TEST (ENTER)

assembles TEST/SRC. No object file is produced unless TEST/SRC contains an
OBJ directive.

Switches
You may specify one or more switches to create a listing or control the assembly
output. If you do not specify filespec2, you must enclose the switches in
parenthesis. For example:

ALASM TEST* L (ENTER)

assembles TEST/SRC into TEST or TEST/REL and displays a listing (L) of the
assembly.

ALASM TEST * U{P (ENTER)

does the same as the above and also creates a cross reference listing (X) and
prints it all on the printer (P).

ALASM TEST (L) (ENTER)

assembles TEST/SRC and creates a listing. Since filespec2 is omitted, the
parenthesis are required.

The details of all the available switches are in Table 7:

24

Table 7/ ALASM Switches

L (Listing)
Generates a complete listing on the video display Figure 1 shows a sample
assembly listing on the Model 4.

The Assembler prints a character to the left of a line number if the line is
affected by one of these special conditions:

Character Condition

the symbol in symbol field is never referenced
p the symbol in symbol field is PUBLIC
g the symbol in symbol field is GLOBAL
+ a symbol in operand field is defined in global file
x a symbol in operand field is defined in an external file
r some or all the object data is relocatable

X (Cross Reference)
Generates an alphabetical cross reference listing of all symbols defined in
the program.

P (Printer)
Outputs the listing on the printer in addition to the video display. Use this
option with the L option. You may not use this switch with the Assembler D
switch, nor can you use it with the TRSDOS SPOOL command's "capture
file" option (the "N" option). Be sure that the printer is on-line.

W (Wait On Errors)
Causes the Assembler to stop the listing at each assembly error. Press
(ENTER) to continue the listing.

T (Truncate the Listing)
Truncates the listing output to the printer so that you can use 80 column
paper.

Ddrive number (Store Listing on Disk)
Stores the listing in a disk file named filespec1 /LST. Use this option with the
L option. If the listing will not fit on the diskette, the Assembler closes the file
and prompts you to change diskettes. Do so and press (ENTERJ. (Be sure the
diskette you remove does not contain the source, object, ALASM files or
important data.)

The Assembler stores the remainder as filespec 1 /LSU on the newly inserted
diskette. If this diskette also becomes full, the listing goes to the next diskette
as filespec 1 /L.SV.

The Assembler repeats this process until it has saved the entire listing. Each
time it creates a new listing file, it will increment the third character in the
extension:

filespec 1 /LST, filespec 1 /LSU, ... filespec 1 /LSZ, filespec 1 /LSA, fi/espec 1 I
LSB, ... files pee 1 /LSS

You may optionally omit the drive number. If you do so, the Assembler
outputs the listing file to the lowest numbered write-enabled drive (usually
drive 0) and continues the listing in the next drive. This is not a good method
to use, since the Assembler might run out of work space before completing
the listing.

Files created with the D option should be printed with the LIST command.

The D switch overrides the P switch.

G (Go)
Executes the program after assembling it. The program must be absolute
and have no errors.

ASSEMBLER

25

MODEL 111/4 ALDS

F (Memory image)
Causes the assembled object file to be in memory image form, rather than
the TRSDOS program file format. The program must be absolute and have
no errors. See the NOLOAD directive in Chapter 8 for more information.

Examples:

ALASM SOURCE OBJTST LOX (ENTER)

assembles SOURCE/SAC into OBJTST/REL or OBJTST. Displays a listing
and a cross reference of this assembly and saves these in one or more files
named SOURCE/LST, SOURCE/LSU, SOURCE/LSV, etc.

ALASM TEST * G (ENTER)

assembles TEST/SAC into TEST or TEST/REL, then executes the program
(unless it is relocatable or has errors).

ALASM MOD1 PROG/CMD LPW {ENTER)

assembles MOD1/SRC into PROG/CMD and generates a listing which is
printed on the video display and the printer. Each time the Assembler
encounters an error, it stops the listing.

ALASM XYZ/COD TST/ABC:2 LD3 (ENTER)

assembles XYZ/COD and stores it as TST/ABC on the diskette in drive 2.
The Assembler generates a listing which it displays and saves as XYZ/LST
on the diskette in drive 3. If the drive 3 diskette becomes full, the assembler
prompts you to insert another diskette to hold XYZ/LSU, a continuation of the
listing.

Note: Be sure the CLOCK is not turned on (CLOCK (OFF}) while running the
Assembler.

26

Tandy CorP+ ALDS ALASM coPr+ 1982t83 v.03+02
Source=TEST/SRC ObJect=TEST
Pass No. 1 CoMPlete

0000' 00001
0000' 00002
0000' 00003
0000' 00004
0000' 00005
0000' 00006

No AsseMblY Errors

Ti1r1e=0:01
BYtes=0
Lines=B

;THIS IS THE
;AND HERE IS
;AND ANOTHER
HHIS IS THE
;AND HERE IS

END

Pass No. 2 CoMPlete

FIRST LINE
ANOTHER

SECOND
ANOTHER

Figure 1

ASSEMBLER

07/01/83

27

Chapter4/
The ALDS Debugger
The ALDS Debugger is an easy-to-use system for debugging absolute object
code programs. It includes all the features found on the DEBUG utility program
of your TRSDOS disk. In addition, it includes several new, powerful debugging
tools.

The Model III and Model 4 Debugger are on your system diskette in the module
ALBUG/CMD.

Note: This module resides in all memory above E000H (57344 decimal),
therefore it cannot be used by programs which exceed this amount. This also
means ALBUG should not be used on the Model III within a DO file, or on the
Model 4 when certain high memory drivers are loaded.

Among many other features, the ALDS Debugger allows you to:

• set both permanent breakpoints with pass counts and temporary breakpoints
(see the J and B commands in Table 8).

• execute one or more instructions at a time (see the I and E commands in
Table 8).

• specify a memory address as an offset. This is useful in debugging a program
which you assemble in the relocatable mode (see the O command in Table 8).

What you can debug with the ALDS Debugger:

You can debug any absolute program. The program must lie in memory between
5200H and DFFFH on the Model III and between 3000H and DFFFH on the
Model 4.

In addition, you can use the Debugger to change the contents of disk files, using
the DISK ZAP mode (see the Z command).

Loading The ALDS Debugger
To use the Model III or Model 4 Debugger you must first load the program that
you wish to debug with the TRSDOS LOAD command. Refer to your TRSDOS
III or 4 Disk System Owner's Manual for more information. For example type:

LOAD filespec CEfflIB)

Next you must turn on the ALDS Debugger by typing:

ALBUG (ENTER)

DEBUGGER

29

MODEL 111/4 ALDS

The Debugger display appears on your screen and you are now in the Debugger
command mode. You can use any of the commands listed in Table 8. In order to
begin debugging or executing your program, you must change the PC register to
the address of the beginning of your program by using the "R" command.

If you wish to enter the Debugger without loading one of your programs (i.e. to
enter the DISK ZAP mode), from the TRSDOS Ready mode type:

ALBUG (ENTER)

The Debugger begins execution.

The Debugger Display

This is a sample Debugger display.

fl) 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
~5200: ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) f. • f. ff t • t t t f. t f

5210: ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) •• f •• • t ff t •• • • • f

fl) 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
~6000: ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) t t ft •• ff t t t ••• f •

6010: ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) ll)ll)ll)ll) 0000 ll)ll)ll)ll) ll)ll)ll)ll) f. • ••• t ft ff •• t. t

fl) 1 2 3 4 5 6 7 8 9 A B C D E F 0123456789ABCDEF
®'-LSP-1: 9003 1007 00F8 CAEA 9003 1000 C6E9 50E3 q • • ••••••• p •••••

SP=>: CSES 78ES 0707 21DF 034F 7806 0009 4E23 •• x,,, ! , ,Ox., ,N#
A B C D E F 0 1 2 3 4 5 6 7 8 8 ABCDEF0123456788

~PC=>: 3E93 EFE1 F53E 96EF 5379 7374 6560 2045 >,,, • >. +SYsteM E

IX IY SP PC @PC DISASSEMBLY ~ BC DE HL
SC 0420 llJllJE0 0425 FFFF DFDD 03AllJ 1AFA LO At93H

1< -ZHP- - >11 BP 1 =OFF BP2=0FF BP3=0FF BP4=0FF
1

0 ®
®

Figure 2

Refer to Figure 2 for reference to the following explanations:

1. Upper Dump. This is a 32 byte section in the memory. U stands for Upper
Dump. The 5200 signifies that the memory address of the first byte in that
row is 5200H. When you load ALBUG this address is automatically set to
3000H on the Model 4 and 5200H on the Model III. To the right of the 5200
are the contents of memory locations 5200H through 520FH. To the right of
the 5210 are the contents of memory locations 5210H through 521FH. Above
these lines are numbers which represent the memory address of the data
listed below them. For example, the byte under the 7 and in the row marked
as 5200, is the memory location 5207H.

2. Lower Dump. This is another 32 byte section of memory. It is arranged
exactly like the Upper Dump, except that it is originally set to 6000H on the
Model III and 3000H on the Model 4.

3. The memory location pointed to by one of the register pairs (in this case SP)
is displayed here along with the 15 bytes immediately following it. The label
of this line is SP=>. Directly above it is a line labeled <SP-1. It contains
the 16 bytes preceding the memory location pointed to by the register pair.

30

10

@

(The byte on the far left of the line is at the address (SP)-16 and the byte on
the far right is at the address (SP)-1.)

4. The memory location pointed to by the PC is on this line, marked @PC >.
It is followed by the contents of the next 15 bytes in memory. Above this line
is the memory location of the respective bytes.

5. This line (here shown blank) displays certain information such as base
register addresses and math function results. When you enter a new
command, it is erased.

6. These lines show the contents of the 280 registers. At the right side of the
lower line, below "@PC DISASSEMBLY': is a 280 instruction. The address
pointed to by the PC contains this instruction in machine code, and the
Debugger has disassembled it into an assembly level instruction. The
Debugger uses as many bytes following the PC address as necessary to make
a complete instruction. This means that what is disassembled can be one to
four bytes long.

7. <S2HPNC> are the condition codes set in the F register. The codes are:

s sign
z zero
H half carry
p parity
N BCD condition
C carry

When a condition bit is set (i.e. when it is equal to 1) the Debugger encloses
the letter within the < > characters. Otherwise it simply displays a hyphen
(-). For example, <-2---C> shows that the zero (2) and the carry (C) bits
have been set and all other bits have not.

8. This area lists the status of the permanent breakpoints. BPI= 5200/000C
translates as breakpoint 1 set at 5200H with the pass counter set at 12
decimal passes. BP2 = OFF means that breakpoint 2 is not set. (See Table 8
for more information).

9. When you first enter the Debugger, this line gives version and copyright
information. Thereafter, it displays commands and prompts used in
debugging code.

10. This area displays the ASCII value of any hexadecimal data to its left. If the
hex number has no printable value, a period (.) is displayed.

Entering Commands
Table 8 lists all the Debugger commands. You can execute most of them by
simply pressing the appropriate letter. By pressing (BREAK), you can abort any
command in the middle of execution and return to the command level.

DEBUGGER

31

MODEL 111/4 ALDS

Most commands prompt you to specify a register or data (the prompt is in area 9
of Figure 2). The prompts use these abbreviations:

Adr Address
Ase ASCII
BPI Breakpoint 1
CHR Character
C(lr) Clear
DEC Decimal
<E> (ENTER)
Eadr End address
H(ex) Hexadecimal
Pas Pass counter
Reg Register
SAdr Start address
Str String

The commands usually prompt you for a certain number of parameters. If you
fail to provide enough parameters, or if you use an invalid number as a parameter
(e.g. hex when a decimal number is expected), you receive the message:

Ille~al Pararoeter

and the Debugger returns to the command mode.

Specifying Registers
Certain commands require you to input a register or register pair. For example,
the Debugger might prompt you with:

C,E,L,A(F) ,B(C) ,D(E) ,H(U t<In<t<I>Y,S(P) or P(C)

To enter a single register, you simply press the appropriate letter. To enter a
register pair, you must press the letter NOT shown in parenthesis. For example,
© enters the C register, but (ID enters the BC register pair.

Specifying Data
As a Constant

Some commands require constants. When entering a hexadecimal constant, you
must follow it with H. For example, "10" indicates the decimal number 10,
while'' 10H'' stands for the hexadecimal number 10 (the decimal number 16).

As an Address

Other commands require addresses. These must be in hexadecimal. There is no
need to follow hex addresses with an H.

You can specify an address by referring to a register pair which contains that
address. For example, if BC contains the number 6000H, you can enter $B

32

instead of the address 6000H. The register abbreviations for this type of
addressing are:

AF
BC
DE
HL
I
IY
SP
PC

$A
$6
$0
$H

$Y
$8
$P

You can also specify any address as an "offset" to a base register. This is useful
if you assemble the program in the relocatable mode. It allows you to use a
relocatable location to specify an address. (See the O command in Table 8).

The ALDS Debugger is for debugging your own code. Hence, you cannot enter
an address which is in the system memory (i.e., below 3000H on the Model 4 or
5200H on the Model III). In addition, the Debugger protects itself by not
allowing you to interfere with the memory above E000H on the Models III and 4.
If you enter an invalid address the Debugger returns to the command mode.

Breakpoints
The Debugger allows you to set "breakpoints" within your code. Breakpoints are
commands causing the execution of your program to stop at a given point. There
are two types of breakpoints, temporary and permanent.

You can assign temporary breakpoints with the J command (Jump to an address
and execute). They apply only to this one execution of J. With them you can
execute a short section of code, or determine which way control goes at a branch
statement. (See the J command in Table 7).

With the B (Breakpoint) command, you can set permanent breakpoints. They
remain in your program until you leave the Debugger or clear them. Permanent
breakpoints may have a pass count associated with them.

You must be cautious when setting breakpoints. Set them only at the first byte of
an instruction. If you are writing a self-modifying code where the first byte of an
instruction may change during the course of running the program, be careful not
to place a breakpoint at that instruction.

Another point of caution: If you return to TRSDOS Ready other than through
the Q(quit) command, the breakpoints will not automatically clear. If you return
to ALBUG without reloading your program, the breakpoints will still be there,
although they will not be displayed in the display area. You must personally reset
them by using the M(modify memory) command.

DEBUGGER

33

MODEL 111/4 ALDS

34

Table 8/ Debugger Commands

n; (semicolon)
Advances the memory location of the Upper Dump. The default advance is
16 bytes. You can precede the semicolon with n, a decimal number, which
changes the default ton bytes, until you press (BREAKl, when the default
returns to 16 bytes.

n+ (plus)
Advances the memory location of the Lower Dump. The default advance is
16 bytes. You can precede the plus sign with n, a decimal number, which
changes the default to n bytes.

n- (minus)
Decrements the memory location of the Upper Dump. The default
decrement is 16 bytes. You can precede the minus sign with n, a decimal
number, which changes the default to n bytes.

n= (equal sign)
Decrements the memory location of the Lower Dump. The default decrement
is 16 bytes. You can precede the equal sign with n, a decimal number, which
changes the default to n-bytes.

B
Sets or clears permanent breakpoints and their pass counters. After you
press CID, a prompt appears:

1,2,3,4 or C{lr)?

You can now choose to set or alter any of the four breakpoints, or clear all
four. To set breakpoint 1, for example, press (I). The Debugger prompts with:

0 <E> or [Adr][,Pas]<E>?

You can now select the address where you want the breakpoint. You must
set it at the first byte of an instruction. You can not place a breakpoint on top
of an existing breakpoint.

Each permanent breakpoint is associated with a pass counter. Pass
counters are useful to stop execution after an instruction has been executed
a given number of times. A pass count is specified by following the
breakpoint address with a comma and then the pass count value.

To set the breakpoint at 6000H, with a pass of 12 type:

6000 ,12(ENTER)

You can clear the breakpoint by entering a value of 0:

0 (ENTER)

To clear all four of the breakpoints, press © in response to the first prompt.
The Debugger asks you:

Are You Sure (Y/N)?

to allow you to change your command (the Debugger accepts only Y or N).
The status of all four breakpoints is displayed in area 8 of Figure 2.

When you set each breakpoint, the Debugger saves the contents of the
breakpoint address, and replaces it with an AST 18H instruction on the
Model 4 which assembles into 0DFH or an AST 30H instruction on the
Model Ill which assembles into 0F7H. Now, in typing Y to remove the
breakpoints, the Debugger restores the memory addresses to their original
contents.

The contents of the pass counter can be updated without respecifying the
address of the breakpoint. For example, if you had previously set a
permanent breakpoint at 5200H, you can update the pass count to 24 by
typing:

,24 (ENTER)

in response to:

0<E> or [Adr][,Pas]<E>?

Whenever ALBUG executes a program instruction which is associated with a
permanent breakpoint with a nonzero pass count, the count is decremented
and execution resumes. Execution halts when a permanent breakpoint with
a pass count of zero is reached. ALBUG is designed so that once execution
is halted by reaching a pass count of zero, you may single step over a
permanent breakpoint.

The permanent breakpoint remains in the program until it is explicitly cleared
with the([) command or until ALBUG is exited with the (ID command. Note: if
a return to DOS is executed in your program, the permanent breakpoints
remain intact and ALBUG can be re-entered by typing ALBUG.

ALBUG uses AST 18H instructions on the Model 4 and AST 30H
instructions on the Model Ill to handle all breakpoint processing. If ALBUG
encounters an AST 18H instruction on the Model 4 or an AST 30H
instruction on the Model Ill, which you placed in your program, execution
will halt. To resume execution, the program counter must be reset using
the CID command.

C
Copies one section of memory to another. After you press ©, a prompt
appears:

Start Adr,End Adr,To Adr <E>?

Type the appropriate start, ending, and destination addresses. For example,
type:

5800,582F,6000 (ENTER)

to copy the data contained in addresses 5800H-582FH to addresses
6000H-602FH.

DEBUGGER

35

MODEL 111/4 ALDS

36

D
Dumps the data contained in the address pointed to by a register pair in the
Debugger display. (See area 3 in Figure 2). The data on either side of this
address is also displayed. After you press the Debugger displays:

Reg Dump B(C),D(E),H{L),(l)X,(l)Y,S(P) or P{C)?

To see the data referenced by the IX register pair, respond with:

00
The screen updates to display the new dump.

nE
This command is identical to the (I) command with one exception: If the
current instruction is a call the debugger executes the entire routine.

nF
Searches for a string within a given range in the memory. After you press ®,
a prompt appears:

Sadr,Eadr <E> or <E>?

After you enter a valid start and end address, the Debugger asks you:

H(ex) or A{scii)?

Depending on whether you enter ® or @, the Debugger then prompts
you with:

Hex Str <E>?
or
Ase Str <E>?

When you enter the appropriate type string the Debugger searches
through the given memory for it. If the Debugger finds a matching string,
the Lower Dump is set to display this part of memory. If no match is found,
the Debugger returns to the command level.

To find the next occurence of the string, you need only to press ® from the
command level and respond to the prompt with (ENTERJ. You can continue to
search for matching strings until you reach the ending address (EAdr) or
until there are no more string matches in the specified range.

To specify which occurrence of the string you want to find, precede the F
command with n, a decimal number between 1 and 254. For example, to
find the fifth occurrence of 1 FH, start by entering SF.

The F command will find an ASCII string of up to 24 characters or a HEX
string of up to 12 digits.

You may also specify a new range for the current string. Enter the new
range, abort the® command with the (BREAK) key at the 'H(EX) or A(SCII)?'
prompt, and press:

FU-~-"".'-!/•

G
Examines a 256 byte area in memory. After you press (ID, a prompt appears:

U(pper) or L(ower)?

Depending on your answer, the Debugger displays the 256 byte multiple of
memory which contains the address of the Uppper or Lower Dump. For
example, if the Upper Dump starts at 5207H and you press (ID and then CID,
your screen changes so that it now contains a dump of memory starting with
5200H.

The <n;>, <n >, <n =>,and <n +>commands may be used in this
display mode as they were in the partial screen display mode, except that
the value of n is always rounded up to a multiple of 256.

Press ~ to return to the regular Debugger display.

nl
The (I) and([) commands are ALBUG's single step instructions. The (I)
command executes the current instruction in your program (the instruction
pointed to by the PC register.) ALBUG then increments the PC register to the
next instructions address and returns to the command mode.

By preceding (I) with n, a decimal number, you can indicate the number of
times it is to be repeated. For example, if you type:

101

the (I) command is executed 10 times.

There are a couple of considerations you should be aware of when single
stepping. ALBUG will not place a breakpoint in a protected area. This implies
that an attempt to single step an instruction in a protected area will cause a
jump to that instruction. Single stepping a call to a protected area will cause
the entire call to be executed at full speed. These precautions are necessary
since many of the system calls such as video and disk 1/0 will work properly
only when executed at full speed.

J
Executes a specific section of your program. After you press GD, a prompt
appears:

J [ADR][,BP1][,BP2][,BP3][,BP4] <E>?

The start address (ADA) is optional. If you omit it, the execution begins at
the contents of the PC. BP1-BP4 are temporary breakpoints and are also
optional. You can include any or all of them.

The first temporary breakpoint encountered causes the execution to
terminate. This clears all temporary breakpoints. The execution also
terminates if a permanent breakpoint with a pass of zero is encountered.

DEBUGGER

37

MODEL 111/4 ALDS

38

For example, suppose you want to execute the instructions between 5200H
and 5221 H, inclusively. After pressing Q), you would type:

5200,5221 (ENTER)

Temporary breakpoints are often useful near branch points. If you set
breakpoints at the possible jump locations, you can see which way your
program goes. For example, say you have a set of conditional jumps which
.could go to 6040H, 6080H or 60F0H. When you enter:

5800,6040,6080,60F0 (ENTER)

your program begins at 5800, and terminate after jumping. You can then
examine the PC to see which breakpoint caused the execution to stop (i.e.,
which way the jump went).

K
Allows you to convert between decimal, hex, and ASCII characters. With this
command, you can also perform addition and subtraction. After you press K,
a prompt appears:

Enter value or equation ?

You can then enter a value or equation. For example, to find out the ASCII
character for 32H, type:

32H (ENTER)

The displays on the Models 4 and Ill (in area 5 of Figure 2) are then:

Model 4:
HEX String= 0032 DEC String= 50 CHR String ".2"

Model Ill:
HEX String= 0032 DEC String= 00050 CHR String ".2"

To do addition or subtraction, simply type in the equation. You can mix
decimal, hex, or character constants in the equation. Only single characters
are allowed, and unprintable characters are output as periods(.); all
characters must be preceded by a quote mark("). For example, if you type
this equation:

1124-40H + "Z (ENTER)

the Debugger displays:

Model 4:
HEX String= 047E DEC String= 1150 CHR String= 11

.-
11

Model Ill:
HEX String= 047E DEC String= 01150 CHR String=".-"

the result must lie between 0 and FFFFH, or else the number is represented
modulo FFFFH. For example, -1 H is represented as FFFFH, and 10001 Has
1H.

L
Loads a given range of memory with a constant value. After you press a
prompt appears:

SAdr,EAdr,Value <E> ?

When you enter a start address, end address, and value, the area in memory
is filled inclusively with the value. For example:

6000,6FFF,FFHCENTER)

fills addresses 6000H to 6FFFH with FFH.

6000,6FFF, 16(ENTER)

fills addresses 6000H to 6FFFH with 10H (the hexadecimal equivalent of
decimal 16).

M
Changes values in user memory. After you press 00, a prompt appears:

Address=?

Enter a hexidecimal address and press (ENTER). The Debugger then displays
a 256 byte block of memory and puts the cursor on the specified memory
location. The numbers along the left-hand side are the memory addresses
for the first byte in their respective lines. You may reposition the cursor with
the up, down, left, and right arrow keys when entering data. Press (ENTER) to
return to the debugger display.

N
Toggles the Debugger display between the primed and unprimed register
set.

0
Sets values for offset base registers. You can use these offset registers for
debugging a program you assembled in the relocatable mode. When you
press CID a prompt appears:

1,2,3,4,5,6,7,8 or <E>?

If you press (ENTER) the Debugger displays the values of the base registers in
area 5 of the screen (see Figure 2). There are eight offset base registers.
They supply the "base" or start address of the program or O module.

After you set an offset address, you can specify an address as a relocatable
location, followed by a colon, followed by the number of the offset register.
(Your Assembler listing gives the relocatable locations of each instruction.)

For example, if an instruction in the assembly listing is at relocatable 0001A,
and you linked the program using an absolute start address of 6000H, press
(1) in response to the above prompt, and you will receive:

Base Adr <E>?

DEBUGGER

39

MODEL 111/4 ALDS

40

type:

6000 (ENTERJ

This sets base register 1 to 6000H. Then, an address 1AH bytes after the
beginning of 6000H can be entered as 1A:1.

P (Model Ill) or (CTRL) (Model 4)
Prints what is currently displayed on your screen. If your printer is not ready,
you must press the (BREAK) key to return to the command line.

Q
Exits the Debugger and returns to the TRSDOS Ready mode. All existing
breakpoints are cleared. The Debugger is turned off.

R
Alters the contents of any of the registers. When you press (ID, a prompt
appears:

C,E,L,A(F),B(C),D(E),H(L),(l)X,(l)Y,S(P) or P(C)?

After you press the appropriate letter, the Debugger prompts you for a value
to put in the register. For example, if you are changing the C register, a
prompt appears:

(C =##or# <E>) C=?

To change the register to FFH, type:

FF (ENTER)

The screen is updated and the C register now contains FFH.

You can also change register pairs. For example, if you were changing the
contents of the HL register pair to A064H, after you press (ID, respond to the
register prompt by pressing®· You are then prompted with:

(HL =####or ### or H =##or # <E>) HL=?

To complete the change, simply type:

A064 (ENTER)

If you are changing a register pair and you input only 3 digits, the Debugger
assumes leading zeros. By using the N command first, you may alter the
contents of the prime register set.

The stack pointer and the program counter may not be changed to point at
the protected areas. Keep in mind when changing the stack pointer that
ALBUG uses the stack. To be safe allow for a stack size of 256 bytes.

s
Executes a TRSDOS system command. Enter the system command after
the S. For example:

S DIR (ENTER)

returns the directory of drive 0, and then prompts you with:

<ENTER> to continue

Note: Some commands automatically jump to TRSDOS Ready if there is an
error such as "File not found''. If this occurs, be aware that the breakpoints
are not cleared.

V
Changes the start address of the Upper or Lower Dump. When you press 00,
a prompt appears:

(U)pper or (L)ower?

Depending on which you press, ([l or ([), you will be prompted with either:

U Address=?
or
LAddress =?

For example, to change the start address of the Upper Dump to 6000H,
respond to "U Address =?"with:

6000 (ENTER)

z
Enters the DISK ZAP mode, allowing you to debug disk files. See the
explanation below.

The Disk Zap Mode
The DISK ZAP mode allows you to change the contents of your fixed length
record disk files. When you enter the Z command, the screen clears, and you are
prompted:

ALDS Disk ZaP
Enter FilesPec?

After you enter the filespec, DISK ZAP asks you for the sector or record number.

Note: DISK ZAP on the Models III and 4 only work on files that have an LRL of
256, therefore the sector number and the record number will be the same.

Enter Sector/Record Nurober (# <E> or <E>> ?

You can specify a sector number, or just press (ENTER). If you press (ENTER), the
DISK ZAP displays the first disk sector containing your file (relative sector 0).

The display for the sector is similar to what the M (Modify memory) command
displays, except that the relative sector and starting byte numbers are listed along
the left side in hexadecimal. For example, the number 1100 refers to sector 11
hex (17 decimal) and byte 00.

You can move from sector to sector by pressing the semicolon which
advances the display to the next sector. The minus sign decrements the

DEBUGGER

41

MODEL 111/4 ALDS

display to the previous sector. If you cross a file boundary (i.e. if you go to a
sector not used by your file), you will return to the DISK ZAP filespec prompt.

You can modify the data in your file much like you modify memory. When you
press 00, the Debugger puts the curspr onto the first byte of the sector. You can
then position the cursor to the correct byte with the up, down, left, and right
arrows. After you have completed your change, press (ENTER) to write the change
to the disk. If you don't want the change written, press the ~ key.

Technical Note: Decimal numbers in ALBUG are treated modulo 65536. For
example, a number entered as 65537 will be treated by ALBUG as 1. Thus,
ALBUG will not let you access any sector or record above 65535.

Disk Zap Errors
If you get an error message while using DISK ZAP, it is a TRSDOS error
message. See your TRSDOS Owner's Manual for an explanation.

Leaving The DISK ZAP Mode
Pressing (BREAK) at the DISK ZAP filespec prompt returns you to the Debugger.
Pressing (BREAK) from any other level of DISK ZAP returns you to the original
DISK ZAP filespec prompt.

42

Chapter 5/
The ALDS Linker
(ALLINK)
The ALDS Linker converts a relocatable object file into absolute object code.

Unlike many linkers, ALDS Linker receives its commands through directives in
your program. You can use these directives to get the Linker to link in external
program sections and use external symbols. The Linker directives are:

PSECT - begins a program section and determines its mode (absolute or
relocatable)

PUBLIC declares symbol definitions PUBLIC so that other program
sections can use them

EXTERN - brings in external symbols
GLOBAL- creates a global symbol file
GLINK - brings in global symbols
LINK - links an external absolute or relocatable program section

For information and examples on how to write a relocatable program containing
Linker directives, see Chapter 8.

The Linker Command
This command, typed in the TRSDOS Ready mode, loads and executes the
Linker:

ALL INK filespecl filespec2 {options}

filespecl is the relocatable file you want converted. If you do not specify an
extension, the Linker assigns it the extension /REL.

filespec2 is optional. If specified, it stores the converted absolute object file. If
not, the Linker will still processes the file so that you can test for undefined
symbols, missing files, or generate a listing.

On the Models III and 4, filespec2 must have the extension /CMD to load and
execute. You can use an asterisk (*) to specify filespec2. If so, the Linker assigns
itfilespecl's name with the extension /CMD.

You can specify one or more of these options, separated by a blank space:

$ = nnnn specifies the absolute hexadecimal start address of the program. If
omitted the start address is 3000H (Model 4) or 5200H (Model III).

LINKER

43

MODEL 111/4 ALDS

MAP prints each PSECT name, its absolute start address, and the start, end,
and transfer address of the program.

SYM prints the absolute address of each PUBLIC and GLOBAL symbol,
sorted alphabetically by symbol. You cannot use this option with the
XREF option.

XREF prints an alphabetical cross-reference of each PUBLIC and GLOBAL
symbol, its absolute address, and all addresses which reference it. This
option overrides the SYM option, if both are specified.

DISK saves the listing requested by the MAP, SYM, or XREF options on
disk. The resulting disk file has the same name as filespecl with the
extension /MAP.

PRT directs the listing requested by the MAP, SYM, or XREF options to the
printer.

Examples:

ALLINK PROG/REL PROG $=7000 MAP SYM DISK (ENTER)

assigns absolute addresses beginning with 7000H to PROG/REL and stores the
resulting file as PROG/CMD. The Linker displays a PSECT MAP and a table of
absolute symbol definitions then stores this listing in a file named PROG/MAP.

ALL INK PROG DONE (ENTER)

assigns absolute addresses beginning with 3000H (Model 4) or 5200H (Model
III) to PROG/REL and stores the resulting file as DONE/CMD.

ALLI NK PROG * (ENTER)

assigns absolute addresses beginning with 3000H or 5200H to PROG/REL and
stores the resulting file as PROG/CMD.

Technical Information

Operation

The Linker processes the file in two passes. In pass 1, the Linker:

• processes any LINK directives by linking in the specified program sections.

• assigns the file absolute addresses. It does this by offsetting the relocatable
locations (assigned by the Assembler) to the absolute start address.

• processes any LINK directives by linking in the specified program sections
(PSECTs). If the PSECT to be LINKed is relocatable, the Linker assigns it
addresses which immediately follow the last relocatable PSECT. If it is
absolute, the Linker will assign it the same addresses the Assembler assigned it.

44

• processes any PUBLIC or GLOBAL directives by inserting the declared
symbols and their corresponding definitions in a Linker symbol table.

• processes any GUNK directives by inputting the specified global file's symbols
into the Linker symbol table.

In pass 2 the Linker:

• fills in the addresses of any EXTERNal symbols, and generates error messages
for all undefined symbols.

• if JUespec2 is specified, saves the resulting absolute file.

• processes any GLOBAL directives, by creating a global file.

Maximum Sizes:
The Linker links up to 200 external program sections (PSECTs).

The Linker Symbol Table holds at least 2,000 external symbols. However, if you
use symbols smaller than the maximum size of 10 characters, the Symbol table
can hold more.

The maximum absolute object file which the Linker creates can be as large as
TRSDOS will load. See your TRSDOS manual.

LINKER

45

FILE TRANSFER

Chapter 6/
ALDS File 1hmsfer System
(ALTRAN)
The ALTRAN program transfers files created under the ALDS package between
any two TRS-80s (Model I, II, III, 4, 12 or 16) by either hardwire or modem. It
transmits or receives object code, source code or data files. This chapter explains
how files can be transferred between the Models III and 4. If you wish to transfer
files on your Model I, II, 12 or 16, you will need the Model II ALTRAN
package.

Since ALTRAN was developed specifically for files created with the ALDS
package, we cannot guarantee that it will accurately transfer files created with
other software.

Set-up
You can use two types of connections in ALTRAN: modem or hardwire.

Modem
The standard RS-232C Interface is appropriate if you plan to transfer files via a
modem. You can use any TRS-80 modem provided that both ends can use the
same baud rate and can communicate with each other (i.e. both can't be originate
only or answer only modems).

See your Radio Shack modem operation manual for installation instructions.

Hardwire
If you plan to hardwire the Models III and 4, you will need:

Model IIl/4 to Model III/4 26-1408 RS-232C Cable
26-1496 Adapter Box
26-1497 12" Extension Cable

Baud Rate
The factory sets the baud rate at 300 for all ALTRAN packages. As a general rule
with most systems, the quality of transmissions is directly proportional to the

47

MODEL 111/4 ALDS

ratio of distance versus baud rate. In other words, the higher the baud rate, the
shorter the distance allowed.

If you want to change the factory-set baud rate, you can use the PATCH utility.
The patch for the Model III is:

PATCH ALTRAN/CMD CADD=5200,FIND=55,CHG=nn) (ENTER)

where nn is the value in Table 9.

The patch for the Model 4 is:

PATCH AL TRAN/CMD (000 ,04=nn: F00 ,04=55) (ENTER)

where nn is the value in Table 9.

Table 9/ Baud Rate Change Table

Baud Rate Desired Model Ill and 4 Patch

75 11
110 22
150 44
300 55
600 66

1200 77
1800 88
2400 AA
3600 BB
4800 cc
7200 DD
9600 EE

The following table shows the recommended maximum distance (hardwired)
versus baud rate for high quality transmissions. The factors that govern this table
are for worse case non-modem situations.

Note: All values are approximate.

Baud Rate

75 -300
600 -1200
1800-3600
4800+

Maximum Model 111/4
Distance

500 feet
50 feet
25 feet
10 feet

Loading ALTRAN
To load ALTRAN from TRSDOS Ready, type:

AL TRAN (ENTER)

48

FILE TRANSFER

The program immediately displays the menu of operations and the settings of the
RS-232C parameter list.

Figure 3 shows the menu of ALTRAN.

Tandy SYstems Desisn Model 4 File Transfer Prosram
CoPYrisht 1982,1983 Tandy CorP. Ver •• vv,rr,PP
300 baud, 8 data bits, no Parity, 1 stoP bit

1 - Transmit OBJECT file
3 - Transmit SOURCE file
5 - Transmit DATA file

7 - Transmit via COMMAND file

2 - Receive OBJECT file
4 - Receive SOURCE file
6 - Receive DATA file

8 - Receive via received COMMAND file or WILDCARD mask
8 - Enter 'Mini-Terminal' Mode
Q - Return to TRSDOS

Figure 3. THE ALTRAN MENU

Operations 1, 3, 5, and 7 are the transmission modes. The one you select depends
on the type of file you want to transfer.

Operations 2, 4, 6 and 8 are the receiving modes. Again, the one you select
depends on the type of file you'll be receiving.

You can use operation 9, 'Mini-Terminal: for terminal to terminal
communications.

See COMMAND FILE for instructions on creating a command file.

The transmit WILDCARD operation is only available on Model II ALTRAN.

Operation
Once you load ALTRAN, as a final test to ensure both transmitting and receiving
stations are operational, send a test message via Operation 9- 'Mini-Terminal'
mode in both directions. ALTRAN must be able to communicate in both
directions to function properly.

Beginning the 1ransmission
1. Determine the type of file you want to transfer.

Use operations 1 and 2 (OBJECT file) for:

• ALDS object files (both executable and relocatable)

Use operations 3 and 4 (SOURCE file) for:

• ALDS source files
• Series I Editor/ Assembler source files (the file transfer system will write the

file to the receiving station in ALDS source file format).

49

MODEL 111/4 ALDS

Use operations 5 and 6 (DATA file) for:

• fixed length record files (assembler global files, application program data
files, assembler listing files, and non-ALDS source files such as some
BASIC files.)

Please note some non-ALDS Model III and Model 4 files, with an EOF byte
which is not zero (as displayed in the directory) may not transfer properly.
This is because ALTRAN will change the EOF byte to zero, thereby
changing the length of the file.

Note: When transferring files from one model to another, you must consider
the differences between systems. It is unlikely that the same object file can run
on all models due to the difference in ROM and RAM addresses, etc. In
addition, we can't guarantee successful transfer of file formats not used by
ALDS, even though some files may transfer.

2. Select an operation.

The number of the operation you choose depends on the type of file you want
to transfer and whether you're the transmitting or receiving station. If you are
the transmitting station and plan to send an OBJECT file, type 1 (ENTER) in
response to the Which? prompt. The receiving station enters a 2 in answer to
the Which? prompt. (The order in which the stations enter their operations
doesn't affect the transfer, i.e. the receiving station can specify operation 2
before the transmitting station specifies operation 1.)

3. Specify a file.

After each station selects an operation, ALTRAN prompts for a filespec with
File Name?

Both stations should enter the name of the file. Be sure to include the
extension and drive number (if not the system drive).

If you choose Operation 7, ALTRAN prompts the the transmitting station with
File Name? (See COMMAND FILE later in this section on how to
create one.)

Using Operation 8, ALTRAN prompts the receiving station with Drive
Number?. To avoid the possibility of accidently writing over a file, the
receiving station should use a blank formatted diskette.

During the 1ransmission
When operation actually begins, the transmitting station immediately sends the
first block of the file. During transmission, the display reads:

'TransMittinf Block 1 '

As each block is sent, it increments the block number by one. (Depending on the
baud rate and LRL, this increment may take from a fraction of a second to about
a minute.) This message is not displayed if you are transferring a null file (EOF
and no other information).

50

FILE TRANSFER

At the same time, the message:

'Receiuinr Block 1'

appears on the receiving station's video display. This indicates that the station is
ready to receive the first block of the file, and is not necessarily receiving it.
After each file is received, the block number displayed is one more than what
was actually received.

This message may not come on immediately in operations 5 and 6 because the
transmitting station must first send the file type and the logical record length of
the file before the receiving station can be readied to receive the first block of the
file.

After receiving each block, ALTRAN increments the block number by one, then
stores that block to disk under the filespec named in step 3.

If the receiving station is not ready, the transmitting station keeps trying to
transmit a block until it receives an acknowledgement or until the (BREAK) key
is pressed.

Once transmission actually takes place, the receiving station expects a block until
it receives an EOF marker or until the (BREAK) key is pressed. If the (BREAK) key is
pressed during transmission of a file, the file won't be valid or useable.

On SOURCE file transfer only, prior to transmission, ALTRAN at the
transmitting station checks the first line of the file for an existent line number.
If there is none, it automatically adds line numbers to the entire file before
sending the file.

The receiving station strips the bytes corresponding to the line number from all
lines of the transferred file as it stores them.

In the 'Mini-Terminal' mode, you can transmit any character except~ and
(BREAK) and the receiving station will output the character to the screen. However,
not all of the TRS-80 models (at the receiving station) interpret the characters in
the same way. One model may interpret the control characters differently and
display a character other than what was transmitted. On other models, certain
characters may activate features such as dual routing, reverse video, or 40-
character mode. And, the Models III and 4 won't output tabs.

Ending the Transmission

After all transmissions are complete for operations 1 through 8, ALTRAN
returns to the menu, unless you are sending a command file ending with
operation 9.

To escape from the menu, type (ID (ENTER). To exit the 'Mini-Terminal' mode,
press ~ on the Model III/4.

If you want to transfer another file, return to Step 2.

51

MODEL 111/4 ALDS

When an Error Occurs
If an error occurs at one station (not including 'Unknown or unuseable baud rate
was oatcne:a which automatically returns to TRSDOS Ready), ALTRAN will
cease transmission, close the file, return a descriptive error message, and display

Further transmission not possible
Press (ENTER) to go into Mini-Terminal mode
Press (ENTER)~ to return to menu
Press (BREAK) to exit to TRSDOS Ready

When an error occurs, the computer making the error will send a cancellation
message ((CLEAR)OO or 18H) which the other computer will display minus the
descriptive error message.

Under certain circumstances, such as transmitting or receiving the LRL, a byte
of data, or the checksum, this feature is disabled so that a legitimate 18H won't
cause a cancellation and an error message won't be displayed. Therefore, if your
computer remains idle for a period of time (the length depending upon your baud
rate), you can assume an error has occurred. Press (BREAK) to return to TRSDOS
Ready.

Note: It is always a good idea for both stations to arrange to go to 'Mini
Terminal' mode if an error occurs. Because the station not causing the error isn't
always informed of an error, you should return to 'Mini-Terminal' mode if your
computer locks up for an unusual length of time.

Command File
A command file is an automatic input file. This file executes a series of
operations with one command. By building a command file, you will be able
to transmit several files with this one command.

You must enter the Editor to create a command file. The procedure is:

1. Load the Editor
2. Enter the Insert Mode
3. Enter the filespec you are sending
4. Tab over one position and enter the operation code number used for

transmitting the file (1, 3, or 5)
5. Repeat steps 3 and 4 until all files are entered.
6. If you want to invoke Mini-Terminal mode, enter it last. A dummy filespec

must precede it.
Exit insertion mode

8. Write the command file to disk. Do NOT use the line numbers option.

Example:

At TRSDOS Ready, type:

ALEO IT (ENTER)

to enter the Screen Editor. Then type I to enter the insertion mode.

52

FILE TRANSFER

In the insertion mode, type:

FI LE 1 /SRC 3 (ENTER)
FI LEZ / OBJ 1 (ENTER)
FILE3/DAT 5 (ENTER)
DUMMY 8 (ENTER)

to create the command file.

When run, this command file transmits three files in a row with one input
command. It transmits the first filespec, FILEl/SRC, as a source file, the second,
FILE2/OBJ, as an object file, and the third, FILE3/DAT, as a data file. The last
file, DUMMY, isn't transmitted. It invokes the 'Mini-Terminal' mode.

If for some reason you don't have ALEDIT, you may download the Command
File from another computer, using the SOURCE File Transfer.

Technical Information

Definitions:
ACK = Acknowledgement of receipt of correct block or inquiry and request to

transmit next block. (code 06H)

NAK = Acknowledgement of receipt of incorrect block and request for
retransmission. (code 15H)

WAK = Acknowledgement of receipt of correct block, but wait before
transmitting next block (so the computer may write out block). (code
lBH)

EOT = End of transmission of this file. (code 04H)

ENQ = Enquire for a ready to receive. (code 05H)

ETX = End of text. (code 03H)

CAN = Cancellation (aborts current transfer) (code 18H)

Algorithms
Object Files

ALTRAN transmits and receives OBJECT files as 256 byte, fixed length record
(FLR) blocks.

It uses this algorithm to transmit OBJECT files:

1 open file for read
2 read a sector into a buff er

if end of file, send EOT, receive ACK, and return to menu
3 display xmit block number
4 send ENQ

53

MODEL 111/4 ALDS

5 receive ACK
6 output sector
7 output checksum
8 receive ACK or NAK or WAK

repeat block if NAK
ifWAK, wait for ACK

9 goto 2, "read a sector"

It uses this algorithm to receive OBJECT files:

1 open file for write
2 display received block number
3 receive ENQ

if EOT, send ACK, close file and exit
4 send ACK
5 receive sector
6 receive checksum
7 output ACK,NAK,WAK

repeat receive if NAK
8 send WAK
9 write sector

10 send ACK
11 goto 2, "display block number"

Source File

ALTRAN transmits SOURCE files as fixed length records (FLR) 256 on
Models III/4.

It uses the following algorithm to transmit the SOURCE file:

1 open file for read
2 read in a line (if MOD III/4 strip bit 7 from line numbers). If a line

number is not present on the first byte of the line, add a line number.
Be sure the source does not have numbers in column 1. They may be
accidentally deleted. If end of file, send EOT and receive ACK.

3 display xmit block number
4 send ENQ
5 receive ACK
6 send line length
7 output the line
8 output the checksum
9 receive ACK, or NAK, or WAK

repeat line if N AK
if WAK, wait for ACK

10 goto 2, "read in a line"

It uses this algorithm to receive the SOURCE file.

1 open file for write
2 display receive block number

54

FILE TRANSFER

3 receive ENQ
if EOT, send ACK, close file and exit

4 send ACK
5 receive line length
6 receive the line
7 receive the checksum
8 send ACK, or NAK, or WAK

repeat receive if NAK
send WAK
write the line, without the line number

9 goto 2, "display block number"

Data File

The ALTRAN program sends DATA files as fixed length records (FLR) on the
Models IIl/4.

It uses the following algorithm to transmit the DATA file:

1 open file for read
2 send file type (F) and file's LRL
3 read in one record of data

if end of file, send EOT, receive ACK, and exit.
4 display xmit block number
5 send ENQ
6 receive ACK
7 send data record length
8 send data
9 send checksum

10 receive ACK or NAK or WAK
repeat xmit if NAK
if WAK, wait for ACK

11 goto 3, "read in one record"

It uses this algorithm to receive the DATA file:

1 receive file type (F) and file's LRL
2 open file for write with those parameters
3 display receive block number
4 receive ENQ

if EOT, send ACK, close the file and exit
5 send ACK
6 receive data record length
7 receive data
8 receive checksum
9 send ACK or NAK or WAK

repeat receive of NAK
send WAK, write data record

55

MODEL 111/4 ALDS

10 send ACK
11 goto 3, ''display block number''

Indirect Command File

ALTRAN uses this algorithm to transmit the COMMAND file:

1 open IND file for read
2 build a text line

if end of file, send ETX, wait for ACK, and return to menu.
3 sendENQ
4 receive ACK
5 send file name and function
6 send checksum
7 receive ACK or NAK or WAK

if NAK, goto send ENQ
8 display file name
9 transmit file through functions 1, 3, or 5

10 goto 2, "build a text line"

It uses this algorithm to receive the COMMAND file:

1 receive ENQ or ETX
if ETX, send ACK and return to main menu

2 send ACK
3 receive file name and function
4 receive checksum
5 send ACK or NAK or WAK

if NAK, goto receive ENQ or ETX
6 display file name
7 receive file through functions 2, 4, or 6
8 goto 1, "receive ENQ or ETX"

Mini-Terminal Mode

ALTRAN uses the following algorithm to transmit and receive keyboard
characters:

1 scan keyboard for character
if escape character, exit mini-terminal mode
if character, then display and output to RS-232C

2 scan RS-232C input
if character, then display

3 goto 1, "scan keyboard"

56

FILE TRANSFER

Building an Adapter Connection
If you want to, you have the option to build your own adapter connection instead
of buying a Radio Shack Adapter Box (Catalog Number 26-1496).

Required Materials

Model III/4 RS-232C Interface Board
RS-232C Cable
DB-25 Male Connector (2)

When hardwiring for Model III/4 to Model III/4, the pin connections are as
shown below:

Figure 4. / Model 111/4 Pin Connections

The pin connections are as shown:

1
2

3

--------1

2

3

57

LANGUAGE SYNTAX

Section II
ALDS Assembly Language

59

LANGUAGE SYNTAX

Chapter 7/
ALDS Assembly Language
Syntax
This chapter describes how the ALDS Assembler interprets source lines. The
next chapters list all the instructions available with ALDS.

An ALDS assembly language source line can contain up to four fields. They are:

• the label
• the instruction

• the operands

• the comment

The Label
The label is optional. It is a symbol which defines the location of the instruction
immediately following it. For example:

NAME LD A,5

NAME is a symbol used as a label. The Assembler uses it to store the location of
the LD A,5 instruction. For example, if LD A,5 is at location 5200H, the
Assembler assigns the value 5200H to NAME and stores this in the symbol table.

The label must begin in column one (the first character in the line) or be followed
by a colon. For example, this line produces a syntax error:

NAME LD A,5

since the label NAME is not in column one.

However, this is acceptable:

NAME: LD A,5

since NAME is followed by a colon.

Valid Symbols
A symbol can consist of up to ten of the following characters:

alpha characters
(A-Z) in either upper or lower case (the Assembler treats upper and lower case
letters differently. "NAME", for example, is a different symbol than "Name").

61

MODEL 111/4 ALDS

numeric characters
(0-9) (the symbol cannot begin with a number).

special characters
the underscore (_)
the question mark(?)
the dollar sign ($)
the character

It may not contain a space character. These are examples of valid symbols:

Date? $B_? A1D2 B2345678

The following are reserved words. You cannot use them as ordinary symbols,
since this conflicts with the way the Assembler notes register names, branch
conditions, or the location counter value:

$ A
M I
XH XL

B C
R V
YH YL

D E H
AF BC DE
NC NZ PE

L F Z
HL SP IX
PO NV

p
IY

Reserved words are reserved in both upper and lower case. For example, SP, sp,
Sp, and sP are all reserved.)

The Instruction
The instruction is usually required. It can be either:

a Z8(!) mnemonic
(Chapter 9), which is an instruction to the microprocessor that the Assembler
converts into a Z80 operation code.

an assembler directive
(Chapter 8), which is an instruction to the Assembler itself.

an extended Z8(!) mnemonic
(Chapter J(f)), which the Assembler expands into a group of Z80 mnemonics.

a macro call
(Chapter 8), which the Assembler expands into one or more of the above types of
instructions. ·

You can begin the instruction anywhere but in column one. If the line contains a
symbol, there must be at least one space, tab, or colon between the instruction
and the symbol.

For example, the Assembler interprets LDIR as an instruction in all of these
lines:

SYMBOL LDIR
SYMBOL LDIR

LDIR
LDIR

62

LANGUAGE SYNTAX

However, in these two lines:

SYMBOLLDIR
LDIR

the Assembler interprets LDIR as part of the symbol field.

You can use either upper or lower case to indicate the instruction. For example,
you can indicate the LDIR instruction as:

ldir

Of course, in the case of a macro call, you must be careful that you use the same
case that you used when you defined the macro.

The Operands
Many instructions allow you to specify data as operands. Some instructions allow
you to use a register name or a flag as an operand. Some allow you to indicate a
specific value.

You must use at least one space or tab to separate the operands from the
instruction. In these examples, A and 3 are operands:

SYMBOL LD A,3
LD A,3
LD A,3

However, this line produces an error:

SYMBOL LDA,3

since there is no space between the instruction and the operands.

Expressions
When specifying a certain value as an operand (such as "3" in the above
example), you must use a valid assembler expression. The expression can consist
of one or more terms connected by operators.

Terms

A term can be:

a number
The Assembler assumes the number is decimal (base 10) unless you use a base
suffix or the RADIX directive. Changing number bases is described in the next
chapter.

an ASCII character
You must enclose the character in single quotes. The Assembler will assemble it
into its ASCII code.

63

MODEL 111/4 ALDS

a symbol
The Assembler fills in its value using the symbol table.

$ (the dollar sign character)
The Assembler interprets this character as the location counter's current value.

For example, each of these are valid terms:

152

which represents the decimal number 152 (unless you have used the RADIX
directive described in the next chapter).

'A'

which represents the ASCII character code of decimal 65 or hexadecimal 41.

SYMBOL

which represents the value of SYMBOL.

$

which represents the current value of the Assembler's location counter.

Operators
The operators and their functions are listed on Table 1 (I). If an asterisk (*) follows
the function, the operator is unary (acts on one operand). Otherwise it is binary
(acts on two operands).

Table 10/ Operators

OPERATOR FUNCTION PRIORITY

+ unary plus* 1
- unary minus* 1
.NOT. logical not* 1
.HIGH.or.MSB. high order byte* 1
.LOW.or.LSB. low order byte* 1
.BIT. bit* 1

(one shifted n bits to the left)
** or A exponentiation 2
* multiplication 3
I integer division 3
.MOD. modulo 3
.SHR. logical shift right 3
.SHL. logical shift left 3
.RR. logical rotate right 3
.AL. logical rotate left 3
+ addition 4
- subtraction 4
.AND. lo ical and g 5

64

LANGUAGE SYNTAX

.OR.

.XOR.

.ABS.

.EQ. or=

.GT. or>

.GE.

.LT. or<

.LE.

.RES.

.SGN.

.UGT.

.UGE.

.ULT.

.ULE.

Examples:

4321H+SHL+3

logical or
logical exclusive or
absolute value*
equals
greater than
greater than or equal to
less than
less than or equal to
result*
(ignore overflow)
sign*
unsigned greater than
unsigned greater than or equal to
unsigned less than
unsigned less than or equal to

returns the number 4321H shifted three bits to the left.

4321H+SHL+1

returns the number 4321H shifted one bit to the left.

+RES.(7FFF*7FFF)

6
6
7
7
7
7
7
7
7

7
7
7
7
7

multiplies 7FFFH by 7FFFH and returns the result. (The RES. operator causes
the Assembler to ignore the overflow error this operation would normally cause.)

.SGN+SYMBOL

returns a-1 if SYMBOL is negative, 0 if it's zero, or 1 if it's positive.

Priority of Operators

When you use multiple operators, the Assembler evaluates them using the
priority number indicated. If two operators have the same priority, the Assembler
evaluates them from left to right.

You can use parentheses to change the priority of operators.

Examples:

4+4/2

The division is performed first. (Division is priority 3; addition is priority 4.)

(4+4)/2

The addition is performed first.

4*4/2

The multiplication is performed first.

65

MODEL 111/4 ALDS

Note: You must use parentheses to separate two operators which are both
enclosed in n.-:1·1t}C.'t;. For example:

LD HL,5.AND .. ABS. -4
LD HL,5.AND.(.ABS. 4)

is illegal
is valid

Using Relocatable or External Symbols
in Complex Expressions
When using complex expressions, i.e., expressions using more than one term,
you need to be careful about using symbols which are:

• external (defined in an external program section), or

• relocatable (defined in a relocatable program section).

Table 11 shows which types of complex expressions allow relocatable or external
symbols, and the type of value which the Assembler will return. If the expression
is not on this table, you cannot use a relocatable or external symbol. Under no
conditionscan you use relocatable and external symbols within an absolute
program.

TABLE 11 / Complex Expressions Allowing
Relocatable or External Symbols

Definition of Terms:

ABS is an absolute constant, symbol or expression
EXT is an external symbol or expression
REL is a relocatable symbol or expression
ALL is any of the above

66

COMPLEX EXPRESSION

EXT+ABS
ABS+EXT
EXT-ABS
REL+ABS
ABS+REL
REL-REL
REL-ABS
ALL. EQ.ALL**
REL.GE.REL
REL.GT.REL
REL.LT.REL
REL.LE.REL
REL.UGE.REL
REL. ULE. REL
REL.UGT.REL
REL.ULT.REL
.HIGH.REL

RESULTING TYPE

EXT
EXT
EXT
REL
REL
ABS
REL
ABS
ABS
ABS
ABS
ABS
ABS
ABS
ABS
ABS
*

LANGUAGE SYNTAX

.MSB.REL *

.LOW.REL *

.LSB.REL *

.HIGH.EXT *

.MSB.EXT *

.LSB.EXT *

.LOW.EXT *

*these expressions cannot be used as a term in a larger expression.
Also, they must be used only where an 8-bit quantity is expected.

**the terms must be of the same type (absolute, external, or relocatable) in order
to be equal. Two externals are never equal, including the special case of
comparing an external to itself.

Other Special Conditions
Regarding Relocatable or External Expressions
These are some additional considerations you need to be aware of when using
relocatable or external expressions:

• If you attempt to fit a relocatable or external value outside of the range of - 256
to 255 into an 8-bit field, you will not get an error message. The Assembler will
store the low order byte into this field. (Absolute values outside this range
generate an error message.)

• You can use the .HIGH., .MSB., .LOW, or .LSB. operators only where an 8-
bit value is expected. If you use one of these operators where a 16-bit value is
expected, the Assembler will either give you an error message or unpredictable
results.

• If you use the .HIGH. or .MSB. operator, the Assembler saves the entire value
in the object code so it can properly compute the carry into the high order byte
(which might result from adding the load address to the expression value during
linking)

The Comment
The comment is an optional way to document your program. The Assembler
ignores it.

To insert a comment at the end of a line, you must precede it with a semicolon.
For example, all of these lines contain comments:

NAME LD A,3;This is a coMMent
LDIR;AND SO IS THIS
;and here is another COMMent

LD A,3 ;and another

The Assembler ignores every character following the semicolon. However, this
line produces a syntax error:

NAME LD A,3 This is an illeial coMMent since there
is no seMicolon Precedinf the COMMent.

67

MODEL 111/4 ALDS

Another way to insert a comment is by typing an asterisk(*) in column one. The
Assembler ignores all lines which follow until it encounters another * in column
one.

For example:
LD A,3
•This besins a coroMent section which the Asserobler will
isnore.
COfrllTlent t COMITlent
COITltrlent t COfTlfTlent
This is the last line in the cororoent section
*
ADD B

the Assembler ignores all lines between LO A,3 and ADD B.

68

Chapter 8/
Assembler Directives
Assembler directives are commands to the Assembler oror, in a few cases, the
Linker. They are not instructions to the Z-80 Microprocessor and are not a part of
your executable program. Generally, you can type them in the same form as the
280 mnemonics and insert them throughout the program.

This chapter contains two parts. Each part contains sample programs or segments
of programs which are used to help explain the use of assembler directives. You
will not be able to run these sample programs or program segments on your
computer.

Part A is a tutorial. It describes the different types of directives - what their
purpose is and how they inter-relate with each other in the program.

Part Bis a reference. It contains an alphabetical listing of each directive. Each
listing gives the syntax, a definition, and an example use.

Introduction to Assembler Directives
ALDS assembler directives allow you to:

• Change Number Bases

• Define Symbols

• Define Data

• Define Storage

• Initialize the Location Counter

• Manipulate the Location Counter

• Terminate or Hold the Assembly

• Use External Symbols

• Create Index Sections

• Define Macros

• Create a Conditional Section

• Control the Assembly Listing

Changing Number Bases
The Assembler recognizes number bases 2 (binary), 8 (octal), 10 (decimal) and
16 (hexadecimal). The default is base 10.

DIRECTIVES

69

MODEL 111/4 ALDS

You can change the default with the RADIX instruction. For example:

RADIX 8

tells the Assembler to evaluate all subsequent numbers as base 8.

Using a base suffix identifies a base for a particular number. The base
suffixes are:

H
d
b
QorO

Hexadecimal
Decimal
Binary
Octal

For example, in this instruction:

LD A,33H

the 33 is evaluated as a hexadecimal number, regardless of which default base
you are in.

You can use upper case "d" and "b" suffixes. Be careful with this, though, since
the hexadecimal base interprets "D" and "B" as numbers. For example, in base
16, "lb" is a binary l; "lB" is hexadecimal lB.

Defining Symbols

Defining symbols allows you to refer to data or memory addresses symbolically.
This makes the program easier to read and revise.

ALDS allows you to use a symbol to label the location of any 280 instruction and
most directives. It also contains these directives which define symbols:

• EQU - equates a symbol to a constant value

• DEFL- defines a symbol to a variable value

For example:

NUMBER
LOOP

EQU
LD
•
•

LD

12
A,NUMBER

HL,LOOP

;EQUates NUMBER to 12
noads A 1.r.dth 12

;1oads HL with LOOP

This program uses NUMBER and LOOP as symbols. The first line EQUates
NUMBER to 12. The next line uses NUMBER as an operand.

LOOP will define the location of LD A,NUMBER. The last line uses LOOP to
specify this location.

70

Defining Data
Data definition directives insert data into RAM. ALDS contains these data
definition directives:

• DEFM - defines string data
• DEFE - defines "encrypted data"
• DEFf - defines data and includes a length byte
• DEFB - defines a byte
• DEFW - defines a word
• DEFR defines a Roman Numeral
• DATE - defines the current date
• TIME - defines the current time

For example:
LD HL,TABLE
CALL PRINT ;PRINT TABLE ON VIDEO SCREEN

TABLE DEFM 'THIS BEGINS A TABLE OF DATA'
DEFB 0DH

DEFM inserts the ASCII codes for THIS BEGINS A TABLE OF DATA in the
next 27 locations. The symbol TABLE defines the beginning of this location.

The subroutine PRINT is used as an example for a routine that displays the
specified information on the screen.

Defining Storage
Defining storage reserves an area of RAM which you can use for such functions
as inputting and outputting data. ALDS contains these storage definition
directives:

• DEFS - reserves RAM
• FILL - sets the "fill mode" so that DEFS will fill the reserved area

with zeroes
• NOFILL - ends the fill mode

For example:

BUFFER

LD
LD
CALL

•
•

FILL
DEFS
NOFILL

HL,BUFFER
B,20
KEY ;Ke>'board inPut into

;BUFFER area

20 ;reserves the next 20 bytes

FILL sets the fill mode. DEFS reserves the next 20 locations for storage and fills
them with zeroes. NOFILL unsets the FILL mode.

DIRECTIVES

71

MODEL 111/4 ALDS

Initializing The Location Counter
The Assembler contains a "location counter" which it uses to:

• assign locations to each executable instruction, and

• define the symbols which identify these locations

The locations it assigns are either absolute or relocatable depending on how you
initialize the counter.

Initializing The Location Counter
To An Absolute Location
To initialize an absolute location, you must use PSECT:

START PSECT 7121121121H
71211210 NUM LO At5 ;befin assemblinf
7002 PUSH A
7003 LO AtG
• •
• •

END NUM

at 7000H

This program section initializes the counter to an absolute 7000H. The
Assembler then assigns all the instructions absolute locations, beginning with
7000H.

The Assembler saves this assembly on disk as an "absolute object file': You can
load it in the TRSDOS Ready mode simply by typing the filespec followed by
(ENTER). Each instruction will load into the same (or "absolute") memory location
the Assembler assigned it.

Many other assemblers, such as the Series I, use ORG rather than PSECT to
accomplish the same task. If you want to assemble such a program with ALDS,
you need to change the first ORG to PSECT.

Initializing The Location Counter
To A Relocatable Location
PSECT without an argument initializes the location counter to a relocatable 0000
(the ' signs indicates that the locations are relocatable, rather than absolute):

PSECT
0000' NUM LO At5 ;befin asserr1blinf at

;relocatable zero
0002' PUSH A
0003' LO A,6
• •
• •

END NUM

72

The Assembler saves this assembly on disk as a relocatable, rather than absolute,
file. You cannot load a relocatable file. You need to use the Linker to convert it
into an absolute file.

For example, if the name of the assembled relocatable file is PROG/REL, this
Linker command:

ALLINK PROG PROG $=7000 (ENTER)

assigns absolute locations beginning with 7000H to all the instructions in PROGi
REL. It does this by adding 7000H to each relocatable location. The resulting
program is saved as an absolute file named PROG/CMD.

Manipulating The Location Counter
There are several instructions which manipulate the counter within a program
section. They are:

• ORG - changes the value of the counter

• LITORG - changes the value of the counter and allows room for literal
operands

• SETLOC manipulates the counter for symbols only

• RESLOC - ends the SETLOC manipulation

For example:

PSECT 7000H
7000 BEGIN LD At5 H,esin asserribl ins at 7000H
7002 LD 6t2

SECOND ORG 8000H
81211210 LD HLtADD ;incre1r1ent counter to 8000H
801212 PUSH AF

•
•
END BEGIN

This program section initializes the counter to an absolute 7000H. The
Assembler begins assigning consecutive absolute addresses until it reaches ORG,
which changes the value of the counter to 8000H. The Assembler assigns 8000H
to the next instruction and continues again sequentially.

Since the above program is absolute, ORG's parameter sets an absolute location
of 8000H.

In the relocatable mode, ORG's parameter sets a relocatable location of 8000H.
This means that when you link the program, 8000H serves as an offset to the
program's absolute start address.

For example, assume you assemble the same program in the relocatable mode.
The Assembler assigns it these locations:

DIRECTIVES

73

MODEL 111/4 ALDS

PSECT
0000 1 BEGIN LO A,5 H1e!tin asse1r1blin!t at

; re ocatable zero
0002' LO 6,2

SECOND ORG 8000H
8000' LO HLtADD ; inc rerrient counter to

;relocatable 8000H
8002' PUSH AF

•
•
END BEGIN

Now assume you link the relocatable file to the absolute start address of 6000H.
The Linker assigns it these addresses:

PSECT
6000 BEGIN LO At5 ;t,e !tin asse1,1blin!t at

;relocatable zero
6002 LO 6t2

SECOND ORG 8000H
E000 LO HL,ADD ;incre1nent to

;relocatable 8000H
E002 PUSH AF

•
•

END BEGIN

Notice that here, ORG 8000H offsets the absolute start address of 6000H. This
causes the absolute address following ORG to be E000H (6000H + 8000H).

Assembly Termination Or Hold Instructions
ALDS contains several directives which terminate or hold the assembly.
They are:

• END - ends the assembly and saves the output object file

• QUIT quits the assembly

• NOEND ends assembly of a non-executable "load-only" program

• STOP - temporarily halts the assembly

For example, all of the above programs contain an END directive. This tells the
Assembler to end the assembly, store the assembled file, and return to TRSDOS
Ready.

In most programs, you'll want to use a parameter with END to specify the
transfer address (the address of the first executable instruction in the program).
The Assembler then stores the transfer address so that when loaded, the program
immediately begins execution.

74

Program Sections
All the above programs are "program sections': You can store several relocatable
program sections in the same file.

For example:

MAIN
0000' BEGIN
•
0500'

SU61
0000'
•
0100'

SUB2
0000' LOOP
•
0200'

PSECT
LO

•
RET
PSECT
LD

•
RET
PSECT
LD

•
SVC
END

A,3

HL,DATA

Bt10

38
BEGIN

;befin first PSECT

;befin second PSECT

;befin third PSECT

Since each section is independent, it must declare its symbols "PUBLIC"
(discussed below) for another section to use them. Otherwise, two sections may
not share the same symbols. (Only the MAIN program can use BEGIN; only
SUB2 can use LOOP; and DATA must be defined in SUB 1.)

Notice the Assembler initializes each program section to a relocatable 0000.
Now assume you link the program to an absolute start address of 7000H:

7000

7500

7501
•
7801

7802
•
7802

BEGIN

LOOP

LD
•

RET

LD
•

RET

LD

CALL
END

A,3

HL,DATA

B ,10

LIST
BEGIN

;befin first PSECT

;befin second PSECT

;befin third PSECT

The Linker assigns each relocatable program section an address immediately
following the preceding one.

Using External Symbols
ALDS allows two or more program sections to share the same symbols. For
example, you could write and test several independent subprograms - such as
PAYROLL, PAYABLES, RECEIVABLES, and INVENTORY. You could then
mix and match them into separate application packages.

DIRECTIVES

75

MODEL 111/4 ALDS

ALDS two ways of doing this:

H]~:lr~g the programs into one file
2. creating a "global symbol file"

first more common. The second is for special applications such as overlays
you want to use only the symbol definitions of an external program, but
entire program itself.

1. Combining Program Sections
combining program sections, ALDS offers these directives:

• PUBLIC- declares symbols public
• EXTERN - declares symbols external
• LINK - appends an outside program file

These are actually directives to the Linker, as well as the Assembler.

As an example, assume you want to combine a subprogram named PAYROLL
with a main program named ACCTG. You want both programs to share the same
symbols. This is how you could go about it:

a. Declare the symbols you want shared.

You do this by using the PUBLIC or EXTERN directives at the beginning of your
program. In the PAYROLL subprogram:

PAYROLL PSECT
PUBLIC

E}<TERN

SUBPAY CALL

LD
CALL
LD
CALL
JP

MENU: DEFM
DEFB

CLS:

SUBPAY,MENU

STORE!

CLS

HL,MENU
PRINT
HL,STORE1
PRINT
EXIT
'THIS BEGINS
0DH

;suBPAY and
;MENU are for
;PUBLIC use

; STORE 1 is in
;an EXTERNal
;PROGRAM
;
;defines SUBPAY
;and clears
;screen

;Print MENU

;print STORE!
;ji_thiP to TRSDOS

PAYROLL FOR'

;defines
;MENU

The routine to clear the screen should be Placed here

76

RET
PRINT:

The routine to disPlaY a line should be Placed here

RET
EXIT:

The routine to return to TRSDOS should be Placed here

JP $

END

The definitions for the symbols SUBPAY and MENU are declared PUBLIC. This
means another program can use the same definitions.

The definition for STOREl is declared EXTERNal. This means that although the
existing program uses STOREl, an external program defines it.

In the ACCTG program:

ACCTG PSECT
PUBLIC STOREl ;sTOREl is for

;PUBLIC use

EXTERN SUBPAY,MENU ;suBPAY and
;MENU are in
;EXTERNal ;prosra1r1s

MAIN CALL SUBPAY
STOREl DEFM 'ABC DRUGS'

DEFB IZIDH

Hhis Part of the Pro!1ra1n defines other stores

LINK 'PAYROLL/REL' ;insert
; PAYROLL/REL
Hi le

END MAIN

STOREl is declared PUBLIC. This means that this program defines STOREl
and another program can use STOREl's definition.

SUBPAY and MENU are declared EXTERNal. They are used in this program but
are defined in an external program (namely, PAYROLL).

If you want to try this exercise, use the ALDS Editor to insert the above two
program files. Save the first as PAYROLL/SRC and the second as ACCTG/SRC.

b. Insert a directive to combine the programs

Notice LINK at the end of the ACCTG program. This tells the Linker to link the
assembled code of PAYROLL at the end of ACCTG.

DIRECTIVES

77

MODEL 111/4 ALDS

c. Assemble the programs

Assemble both the PAYROLL and ACCTG source program files in the normal
way. In the TRSDOS Ready mode, type:

ALASM PAYROLL PAYROLL (ENTER)
ALASM ACCTG ACCTG (ENTER)

The Assembler creates two relocatable files- PAYROLL/REL and ACCTG/
REL.

The Assembler marks every occurrence of the PUBLIC, EXTERN, and LINK
directives, as well as every occurrence of EXTERNal symbols. However, you will
need to use the Linker to complete the processing of these directives.

d. Link the programs

To link PAYROLL to ACCTG, you can use this Linker command at TRSDOS
Ready:

ALLINK ACCTG/REL ACCTG $=5200 (ENTER)

The Linker processes the LINK, PUBLIC, and EXTERN directives and assigns
the entire file absolute addresses beginning with 5200H. This is done in two
passes. In pass 1 the Linker:

• processes the LINK directive by linking PAYROLL/REL to the end of ACCTG/
REL

• assigns the entire file absolute addresses

• creates a Linker Symbol Table which contains the definitions of all the symbols
declared PUBLIC.

In pass 2, the Linker:

• fills in the values of all EXTERN symbols (using the Linker Symbol Table
created in pass 1)

• saves the resulting program as ACCTG, an absolute object file.

e. Executing the program

You now have an absolute file, ACCTG/CMD, which consists of both ACCTG/
REL and PAYROLL/REL. To execute it, type at TRSDOS Ready:

ACCTG (ENTER)

Note: In order for this program to execute you must insert the CLS, PRINT and
EXIT routines. Refer to your TRSDOS manual for information on how to execute
these routines.

2. Creating A Global File
Creating a global file is useful if you want to conserve memory by "overlaying"
one program on top of the other. To create and use a global file, ALDS offers
these directives:

78

• GLOBAL- declares symbols global

• EXTERN declares symbols external

• GLINK - tells the Linker to use a global file

• EXT - tells the Assembler to use a global file

As an example, assume you want to create a file name MAIN which consists of a
number of subroutines, such as printing lines on the display.

You also want to create several accounting system files, one of which is
LEDGER. Users will use only one of these accounting systems at a time.
However, each accounting system uses routines from MAIN.

It is therefore necessary to have MAIN and LEDGER in memory at the same
time. However, there is not enough room in memory for both programs.

The alternative is to "overlay" one program on top of the other. In this example,
MAIN loads LEDGER. When loaded LEDGER overlays sections of MAIN
which it will not use.

These procedures clarify how this is done:

a. Declare the symbols you want shared.

This time, you do this with GLOBAL and EXTERN directives. In the MAIN
program:

MAIN PSECT
GLOBAL PRINT

BEGIN CALL CLS
CALL ROUTINE

noad LEDGER routine be sins he re

LD HL,LEDGERM
CALL LOADER

PRINT routine besins here

PRINT
LOOP

LEDGERM

ROUTINE

LD
INC
LD
CALL
DJNZ

RET
DEFM
DEFB
EQU

Bt(HU
HL
A,(HU
PRINTCHR
LOOP

'LEDGER'
0DH
$

;clear screen

;1oad LEDGER file

;print character

;Print contents of
;resister HL

DIRECTIVES

79

MODEL 111/4 ALDS

;This Part of the Proiram contains 18000 bYtes
;of subroutines which onlY MAIN uses.
;since LEDGER does not need them
;LEDGER will load into this area

RET
LOADER:

The routine which loads and runs a disk file
should be Placed here

RET
PRINTCHR:

The routine which disPlaYs characters should be
Placed here

RET
CLS:

The routine which clears the screen should be
Placed here

RET
END BEGIN

The definition for PRINT is declared GLOBAL. When you assemble this
program, the Assembler will create a global file named MAIN/GBL which
contains PRINT's definition.

Notice that this program loads LEDGER. Also notice that it intends to load
LEDGER on top of the ROUTINEs at the end.

This is the beginning of the LEDGER program:

LEDGER

BEGIN

MENU

80

PSECT
EXTERN
LO
CALL
JP
DEFT

PRINT
HL,MENU
PRINT
EXIT ;Jump to TRSOOS
'THIS BEGINS THE GENERAL LEDGER MENU'

the rest of the uerY lons
LEDGER Prosram roes here

GUNK 'MAIN/GBL'

EXIT:

The routine to return to TRSDOS should be
Placed here

RET
END BEGIN

The definition for PRINT is declared EXTERN. Another program (MAIN)
defines it.

(If you want to try this exercise, use the Editor to insert and save the first file as
MAIN/SRC and the second as LEDGER/SRC.)

b. Insert a directive to search the global file

Notice the GLINK directive in the above program. This tells the Linker to look
for PRINT's definition in a global file named MAIN/GBL.

c. Assemble the programs

Assemble MAIN and LEDGER in the normal way:

ALASM MAIN MAIN (ENTER)
ALASM LEDGER LEDGER (ENTER)

The Assembler creates MAIN/REL and LEDGER/REL.

d. Link the program which creates the GLOBAL file

You must link MAIN/REL before linking LEDGER/REL. This is because
MAIN/GBL contains a GLOBAL symbol that must be available to link
LEDGER/REL. Type:

ALLINK MAIN MAIN $=5200 (ENTER)

The Linker assigns absolute addresses to MAIN/REL beginning with 5200H and
saves the resulting absolute file as MAIN.

It also processes the GLOBAL directive. This causes it to create a global file
named MAIN/GBL. This file contains only a symbol table defining PRINT.

e. Link the program which uses the GLOBAL file

After creating MAIN/GBL, you can link LEDGER. Type:

ALLINK LEDGER LEDGER $=5300 (ENTER)

The Linker processes the EXTERN directive. This tells it to look for PRINT's
definition in an outside file.

It then processes the GLINK directive. GLINK tells the Linker to look for
PRINT's definition in a file named MAIN/GBL.

The Linker also assigns absolute addresses to LEDGER/REL beginning 5300H.

DIRECTIVES

81

MODEL 111/4 ALDS

f. Executing the program

You now have two absolute program files:

MAIN and LEDGER

Type:

MA I N (ENTER)

MAIN loads beginning at address 5200H and begins executing. It then loads
LEDGER beginning at address 5300H, which overlays the last portion of MAIN.

Note: In order for this program to run you must add the routines for CLS, EXIT,
LOADER and PRINTCHR. Refer to your TRSDOS manual for information on
how to execute these routines.

Notes And Options
ALDS offers several alternatives for linking programs:

• You can use INCLUDE rather than LINK. If you do this, you must include a
source file rather than a relocatable object file. INCLUDE is a directive which
the Assembler processes at assembly time. (See INCLUDE)

• You can use REF to reference only the symbol definitions of a source file only.
(See REF)

• You can create indirect LINK files composed solely of LINK directives. By
doing this, you can create several files containing different combinations of
program sections. An example of this is PROG4 and PROGIII in Chapter 1.

• You can use EXT rather than GUNK to combine absolute, as well as
relocatable symbols. EXT is a directive to the Assembler (whereas GUNK is a
directive to the Linker)

Index Sections
ALDS contains directives which allow you to create an index section. They are:

• ISECT- begins an index section

• ENDI-ends an index section

• USING- associates an index register with an index section

• DROP-drops the index association established by USING

An index section is for EQUating symbols you want to use as offsets from an
index register. For example:

PROG PSECT 5000H
•

ISECT ;be~ins index section 1

82

DATA EQU
ENDI
•
LO
USING

•
LO

•
DROP

LO

10H

I}< ,4000H
1 dX

A dDATA)

A,<DATA)

;ends index section 1

;associates I}{

;with the sY1r1bol
Hn index
;section 1

Hoads A indexed
h.dth rn, which
;will be (I}{+

;DATA) or
;(4000H+10H)

;drops association
;of I}{ and index
;section 1

;1oads A with <DATA)
h.ihich is (10H)

Index section 1 (ISECT 1) equates DATA to 10H. USING associates all the
symbol equations from ISECT 1 with index register IX. This means any time a
symbol from ISECT 1 appears in the program, the Assembler generates an
instruction to access memory with the indexed addressing mode (IX + the
displacement value).

Later in the program, the Assembler encounters the symbol DATA (defined in
ISECT 1.) The Assembler sets DATA as an offset to the IX register so that when
you run the program, the processor will add DATA to the contents of register IX
(The contents of register IX remains unchanged.)

Then the Assembler DROPs the association between IX and ISECT 1. After
DROPping the association, the Assembler interprets DATA as simply DATA.

You caL temporarily clear a USING association and return to it later with:

• APUSH - saves the current USING associations in an Assembler stack

• APOP- restores the USING status saved with APUSH by "popping" it from
the Assembler stack

For more information, see the individual definitions of each directive.

Macro Sections
ALDS allows you to define your own "macro" symbol as a group of Z80
instructions. Whenever the Assembler encounters this macro symbol, it expands
it into its defined Z80 instructions.

DIRECTIVES

83

MODEL 111/4 ALDS

For example:
START PSECT 7000H
DISPLAY MACRO #L ;be9'ins macro

;section definin9'
;DISPLAY #L
;c #L is a duttlMY
;parameter)

LD HL,#L
LD B dHU
INC HL
LD A,(HL)
CALL PRINTCHR
DJNZ $-5
ENDM ;ends macro section

BEGIN DISPLAY FIRST ;call DISPLAY and
;pass it FIRST

DISPLAY SECOND ;call DISPLAY and
;pass it SECOND

JP E>{IT ;Jump to TRSDOS

FIRST DEFT 'THIS IS THE FIRST SENTENCE'
SECOND DEFT 'AND THIS IS THE SECOND'

END BEGIN

The MACRO section begins with MACRO and ends with ENDM and in this
example defines a MACRO named DISPLAY which displays a dummy parameter
named #L.

The program then calls the DISPLAY macro and passes it the parameter FIRST.
The Assembler expands this DISPLAY instruction into its macro definition,
substituting FIRST for #L:

LD HL,FIRST
LD B ,< HU
INC HL
LD A,(HU
CALL PRINTCHR
DJNZ $-5

Next, the program calls the DISPLAY macro passing it the parameter SECOND.
This expands into:

LD HL,SECOND
LD B dHU
INC HL
LD A dHU

84

CALL PRINTCHR
DJNZ $-5

When you assemble this program, notice that the macro SECTION (not the
macro CALL) is for the Assembler's memory only. It is not assembled as part of
the executable program.

For more information on macros, see MACRO.

IF Sections
An "IF" section is a section of your program you only want assembled if a
certain condition is true. ALDS offers these directives for conditional sections:

• IFT - assemble if operand is a true expression
• IFF - assemble if operand is a false expression

• IFZ- assemble if operand equals zero
• IFNZ- assemble if operand does not equal zero

• IFP-assemble if operand is positive

• IFM- assemble if operand is negative

• IFDEF - assemble if operand is a defined symbol
• IFUND assemble if operand is an undefined symbol

• ELSE- assemble if IF condition is false
• END IF - end conditional section

For example, assume you want to create two versions of a program - a Model 4
version and a Model III:

START PSECT 7000H
MOD4 EQU 0 ;defines MOD4

HanY tJalue will do)
BEGIN LO 6,3

IFDEF MOD4 ;asseMble the following
;IF MOD4 is DEFined

CALL ABCD

ELSE ;asseMble the following
n f ABCD is NOT defined
;

JP EXIT ;juMP to TRSDOS

ENDIF ;END the IF section
END BEGIN

IF the program defines the symbol MOD4, the Assembler processes CALL
ABCD or ELSE it processes CALL EXIT.

DIRECTIVES

85

MODEL 111/4 ALDS

The above program defines MOD4. The Assembler processes CALL ABCD,
thereby producing a Model 4 version of the program. To have the Assembler
return to TRSDOS, delete the MOD4 EQU 0 directive.

Assembler Listing Commands
Assembler listing commands change the way the Assembler processes the listing.

ALDS offers these listing commands:

• EJECT - ejects the printer listing to the next page

• VERSION-prints the time on the second line

• TITLE- prints a title on the third line

• HEADER - prints a heading on the fourth line

• PRINT - prints or does not print what you specify

See each directive listing for more information

Other Assembler Commands
The remaining Assembler commands are:

• AD ISP- displays or prompts you for information

• NOLOAD- assembles in memory image form

• OBJ - specifies the object file name to use

• PATCH-fills the remaining bytes in a sector with FF's to create a patch area

Assembler Directives Reference
The following pages list the syntax and a brief definition of the assembler
directives available with ALDS. This is a definition of the terms used in the
syntax:

expression
a valid assembler expression. (See Chapter 7.)

absolute expression
an expression with an absolute (non-relocatable, non-external) value. This can
include a relocatable symbol as long as the resulting value is absolute. See
Chapter 7.

expression list
one or more expressions, separated by commas.

location
an expression designating an assembly location.

86

filespec
a TRSDOS file specification (see your Owner's Manual).

string
a string of ASCII characters. The entire line must be 78 characters or less.

symbol
a one to ten character name which you may reference in your program.

symbol list
one or more symbols, separated by commas.

ADISP
ADISP 'string"symbol'
ADISP 'string-symbol'

Displays or inputs certain parameters during the assembly of your program. You
can specify one or both of these parameters:

(1) a string to be displayed
(2) a symbol to be displayed or input

Model 4: (CTRLJ(I)
Model III: (SHIFTJ8(I)

inserts the" character which causes the Assembler to display the symbols value.

Model 4: (CTRL)(SHIFT)(E)
Model III: (SHIFT)8(ID

inserts the - character which causes the Assembler to prompt you to input the
symbol's value.

The Assembler executes ADISP during pass one only.

Example:

ADISP 'THE VALUE OF START IS ASTART'

causes the Assembler to display: THE VALUE OF START IS followed by the
value of the symbol START.

ADISP 'WHAT IS THE VALUE OF START -sTART'

displays WHAT IS THE VALUE OF START? ... You can then input a
hexadecimal value for START.

ADISP 'This is MY Messase'

displays the message.

ADISP 1 ·'$ 1

displays the current address of the PC (program counter) register.

DIRECTIVES

87

MODEL 111/4 ALDS

ADISP
ORG

'NEW ORIGIN NSTARTLOC'
STARTLOC

displays NEW ORIGIN? and prompts you to input a value for STARTLOC. The
next instruction resets the location counter to the value you input. Note that
ADISP 'NEW ORIGIN-$, does not accomplish the same thing.

APOP
APOP PRINT
APOP USING
APOP PRINT,USING

Restores the PRINT or USING status which was saved by a previous APUSH
instruction.

Example:

APOP USING

restores the USING status.

APOP USING,PRINT

restores both the USING and PRINT status.

APUSH
APUSH PRINT
APUSH USING
APUSH PRINT, USING

Pushes the current PRINT and/or USING status into an assembly stack. Use
APOP to get this current status back from the stack.

You may nest APUSH only one level deep. That is, you can not use APUSH
twice without an APOP in between them.

Examples:

APUSH USING

saves the USING status.

APUSH USING,PRINT

saves both the USING and PRINT status.

APUSH is useful when you want the Assembler to treat a certain section of your
program differently. For example:

88

•
MAIN PRINT ON

•
PRINT CON

•
PRINT SHORT

•
•

APUSH PRINT
PRINT OFF
CALL SUB1
APOP -PRINT

•

When the Assembler encounters APUSH PRINT, the current status of PRINT is
ON, CON, SHORT (print the first 6 bytes of all source lines, including
conditionals).

The Assembler PUSHes this status into an assembly stack and turns PRINT OFF.
This causes it not to print any lines in SUB 1.

The Assembler then POPs the PRINT ON, CON, SHORT status back from the
stack, which causes it to restore the printing status.

DATE
symbol DATE

Stores the current date in memory beginning with the current address. The
optional symbol labels this address.

The Assembler stores the date as a string in the form of Day of Week, Month
Date, Year (Model 4) or MM/DD/YY (Model III).

For example, if today's date is Saturday, February 29, 1984:

DATE

stores SAT FEB 29, 1984 in Model 4 memory, or 02/29/84 in Model III memory.

DEFB
symbol DEFB expression
symbol DEFB absolute expression list
symbol DEFB absolute repeat count% absolute expression

Stores one or more one-byte expressions in memory beginning with the current
address. The optional symbol labels this address. The optional repeat must be in
the 1-255 range and will repeat a single absolute expression only.

DIRECTIVES

89

MODEL 111/4 ALDS

TCONlJ DEF6 NUM

stores NUM in the current memory address, defined as TCONV. NUM must be
in the range of one byte numbers (- 256 to + 255 decimal).

If you use multiple expressions, all of them must be absolute. For example:

QSYM: DEF6 7,96H,6TA6LE+3

stores decimal 7 at QSYM, the current memory address. Hexadecimal 9B and
BTABLE + 3 are stored in the next two bytes. None of these bytes can be
relocatable. BTABLE must be defined in the existing program unit.

DEF6 128:X, '*'

fills the next 128 bytes with the character '*'.

You can substitute BYTE or DB for DEFB.

DEFE
symbol DEFE 'string'

Stores an "encrypted" string in memory beginning with the current memory
address. The optional symbol labels this address.

Using DEFE makes it difficult for users to read the string by listing the object
code. The first byte contains the unencrypted length of the string. The following
bytes contains each character code XOR'd with 55H.

Example:

MESSAGE DEFE 'hidden data'

stores 'hidden data' in the next 12 bytes and names the first byte MESSAGE. The
first byte contains an 0BH (decimal 11). The next bytes contain codes for 'hidden
data'.

DEFL
symbol DEFL expression

Defines symbol as expression. DEFL allows you to redefine a symbol in the same
program. For example:

IMMED

IMMED

DEFL 5
ADD At IMMED
DEFL
ADD

12
A t!MMED

defines IMMED as 5 and adds it to the contents of register A. The next
instruction defines IMMED as 12 and adds this to the contents of A.

90

Once you define a symbol with DEFL, you should not attempt to define it with
EQU, EXTRN, or use it as a label.

DEFM
symbol DEFM 'string'

Stores string in memory beginning with the current address. The optional symbol
labels this address. For example:

MESSAGE DEFM 'THIS IS THE MESSAGE'

stores 'THIS IS THE MESSAGE' in the next 19 bytes and names the first byte
MESSAGE.

You can use these two special characters in the string:

• the tilde "-" (typed as (CTRU(SHIFTJCE) on the Model 4 and (SHIFT)~(§) on the
Model III) to store a carriage return (hexadecimal 0D).

• the circumflex""" (typed as (CTRL)(I) on the Model 4 and (SHIFT)~(I) on the
Model III) to toggle the high bit (80H) on and off.

For example:

TEXT DEFM /AJAOHN BROWNNM STREET'

stores JOHN BROWN then a carriage return followed by M STREET in the next
19 bytes and flags the letter J by setting the high bit. J is stored as 0CAH, the
code for J, plus 80H.

You can substitute ASCII for DEFM.

DEFR
symbol DEFR 'decimal number'

Converts a decimal number into a Roman numeral string and stores it in memory
beginning at the current address. The first byte contains the hexadecimal length
of the Roman numeral string. The following bytes contain the ASCII codes for
the Roman numerals.

The decimal number must be in the range of 1 to 65535. The optional symbol
allows you to name the first address.

For example:

DEFR '1881'

stores MCMLXXXI in the next 9 bytes. The first byte contains 8, the length of
the Roman numeral string.

DIRECTIVES

91

MODEL 111/4 ALDS

DEFS
symbol DEFS absolute expression

Reserves expression bytes, beginning with the current address, for storage. The
optional symbol names this storage area.

This Assembler will not insert anything in the reserved area unless the FILL
mode is in effect (see FILL).

Example:

BUF1
BUFZ
BUF3
START

ORG 7000H
DEFS 100H
DEFS 50H
DEFS 10
LD HL,BUF1

assigns BUFl to location 7000H, BUF2 to 7100H, and BUF3 to 7150H. START
begins execution at location 7160H, loading HL with 7000H.

You can substitute DS or BLOCK for DEFS.

DEFT
symbol DEFT 'string'

Stores string in memory, beginning with the current address. The optional
symbol labels this address. The first byte contains the length of the string. You
may use the two special characters described under DEFM (the tilde and the
circumflex).

For example:

MESSAGE DEFT 'this is mY messase'

stores the number 12H (decimal 18) in the next byte of memory and 'this is my
message' in the following 18 bytes; then assigns the name MESSAGE to the
address of the first byte.

DEFW
symbol DEFWexpression
symbol DEFW absolute expression list
symbol DEFW absolute repeat count.% absolute expression

Stores one or more two-byte expressions in memory beginning with the current
memory address. The optional symbol labels this address. The least significant

92

byte is stored first, followed by the most significant byte. The optional repeat
must be in the 1-127 range and will repeat a single absolute expression only.

Examples:
MAXCNT DEFW 1000

stores decimal number 1000 in the next two bytes and labels that location as
MAXCNT. Since 1000 decimal is 03E8H, the first byte contains E8H and the
second byte contains 03H.

DEFW 3333,VAL

stores 3333 and VAL in the next four bytes. The same rules that DEFB uses for
multiple expressions apply here. VAL must be defined in the existing program
sections. Relocatable and external expressions may be used only if DEFW has a
single, non-repeated expression.

DEFW 30% 1000

fills the next 30 words with decimal 1000s, repeated 30 times.

You can substitute DW or WORD for DEFW

DROP
DROP1
DROP2
DROP
Terminates the index register association, specified by USING, with ISECT 1,
ISECT 2, or all the ISECTs. This allows you to change USING associations.
For example:

DROP 1

The index register is no longer associated with ISECT 1.

DROP

The index register is no longer associated with any of the ISECTs.

EJECT
EJECT
During the assembly listing, causes the printer to go to the next page before
listing the next instruction. The EJECT instruction will not appear in the listing.

END
END address
Ends the assembly of the source program. The optional address causes the
Assembler to store the entry address of the program.

DIRECTIVES

93

MODEL 111/4 ALDS

Examples:
END 7FFFH

ends assembly and stores address 7FFFH in the assembled file as the entry point
of the program. When you load the assembled file, it will immediately begin
execution at address 7FFFH.

END BEGIN

ends assembly and stores the address defined by BEGIN as the entry address.

END

ends assembly of the program. Since no entry point is specified, the Assembler
stores it as absolute zero. This is an invalid entry point for TRSDOS. Therefore,
you will be able only to load this program with the LOAD command- not
execute it.

ENDI
ENDI

Marks the end of an index section, initiated by ISECT.

ENDM
ENDM

Ends a macro definition, initiated by MACRO.

EQU
symbol EQU expression

Equates a symbol to an expression. For example:

START EQU 5200H

causes the symbol START to be equal to hexadecimal 5200.

POINT EQU 15+START

equates POINT to 5215, the sum of 15 and START.

Symbols defined by EQU may not be defined elsewhere in the program.

EXT
EXT 'filespec'

Tells the Assembler that the absolute definitions for certain symbols in your
program are contained in the specified global.file (created by GLOBAL). Since

94

these symbols will have an established value at assembly time, you should not
declare them EXTERNal or define them elsewhere in the program.

You can specify only onefilespec per EXT instruction. It must have a /GBL
extension. If you omit /GBL, the Assembler will automatically append it.

The EXT statement allows the programmer to have several absolute object files
"talk" to each other. This requires considerable prior planning, but is useful and
powerful.

Since EXT includes only the symbol definitions of the external program and not
the program code, you will need to load the external program before attempting
to use code in it.

For example:

EXT 1 PROG1/G6L 1

EXT 1 PROGZ 1

tells the Assembler that your program contains symbols which are defined in
PROG 1/GBL and PROG2/GBL.

EXTERN
EXTERN symbol list

Declares that one or more symbols are not defined in the existing main program.
They are defined externally in either:

• an external program section (which contains a corresponding PUBLIC
instruction), or

• an external global file (which was created by a corresponding GLOBAL
instruction).

For example:

EXTERN LOOP1 tLOOPZ

declares that LOOPl and LOOP2 are defined externally.

You may substitute EXTRN for EXTERN.

FILL
FILL

Causes any subsequent storage areas, initiated by DEFS, to be filled with zeros.
Use NOFILL to tum it off.

DIRECTIVES

95

MODEL 111/4 ALDS

For example:

6UF1

6UF2

FILL
DEFS
NOFILL
DEFS 2121121

BUFI is filled with zeros. BUF2 is not filled with zeros.

You can use FILL only with DEFS instructions which reserve 255 or less bytes.

GLINK
GUNK 'filespec'

Tells the Linker that the absolute definitions for certain symbols in your program
are contained in the specified global file (created by GLOBAL). Your program
must also contain an EXTERN instruction for each of the symbols referenced, to
avoid undefined symbol errors.

You can specify only onefilespec per GLINK instruction. It must have a /GBL
extension. If you omit /GBL, the Linker will automatically append it.

GLINK accomplishes the same function as EXT, except it is an instruction to the
Linker, rather than the Assembler. Because of this you need not have the external
file written at assembly time, but you must have it loaded when you link the
program.

For example:

GUNK 'PROG1'
GLINK 'PROG2'

tells the Linker that your file contains certain symbols which are defined in
PROG 1/GBL and PROG2/GBL.

GLINK must be the last instruction in your program before LINK, END, or
another GLINK.

GLOBAL
GLOBAL symbol list

Declares one or more symbols as global and stores their values in a "global" file.
Like PUBLIC, this permits another program section to use the same symbols.
GLOBAL, however, goes one step further. It stores these symbols in a global file.

The global file will contain a symbol table only. It will define the absolute values
of all the global symbols. If your program is absolute, the Assembler will create
this global file. If your program is relocatable, the Linker creates it.

96

For example:

PSECT
GLOBAL

DATA DEFM

7000H
DATA
'THIS STARTS A DATA TABLE'

declares that DATA is a global symbol and stores DATA's value, hexadecimal
7000, in a global file. Since this program is absolute, the Assembler will create
the global file.

PSECT
GLOBAL LOOP1 ,LOOP2

declares that LOOPl and LOOP2 are global symbols to be stored in a global file.
Since this program is relocatable, the Linker will create the global file.

The global file will have the same name as the assembled object file with the
extension /GBL. You will be able to access this file with any other program,
provided it has these two instructions:

(1) GUNK, which specifies that some symbols in the global file should be used,
and

(2) EXTERN, which specifies which global (or external) symbol definitions
should be used

or simply:

(1) EXT, which tells the Assembler to look for the definitions of some symbols in
the global file

Symbols declared PUBLIC or GLOBAL must be defined on both passes, that is,
not defined with REF, ASISP, or EXT. The Linker may flag these symbols as
undefined.

Symbols defined with DEFL more than once should not be declared PUBLIC or
GLOBAL. The Linker will flag these symbols as multiply defined.

HEADER
HEADER 'string'

Prints the specified string on the fourth line of each page in the assembly listing
until the Assembler encounters a new HEADER instruction. HEADER starts a
new page.

For example:

HEADER 'Electronics'

causes the Assembler to print ''Electronics'' on the fourth line of each page in
the assembly heading.

For the header string to appear on the first page, HEADER must precede all
listed instructions in the program. Otherwise, it ejects to the next page before

DIRECTIVES

97

MODEL 111/4 ALDS

printing the header string. TITLE, HEADER, and PRINT instructions are not
listed.

You must specify a string when using HEADER. You may substitute HEADING
for HEADER.

IFDEF
symbo/ lFDEF symbol

Assembles the following source lines IF the symbol is defined. IF NOT, the
Assembler goes to the next ELSE or ENDIF directive. The optional symbol
labels this directive.

IFDEF SYMBOL

assembles the next lines IF the program defines SYMBOL. If not, the Assembler
goes to the next matching ELSE or ENDIF. If the symbol is defined at all, it must
be defined before the IFDEF.

The Assembler will not print the IF sections (instructions beginning with an IF
directive and ending with ENDIF) unless PRINT CON is in effect. (See PRINT.)

All IF directives are nestable to six levels.

IFF
symbo/ lFF expression

Same as IFDEF except the expression must be false for the next lines to be
assembled. For example:

IFF 5+GT.SYMBOL

assembles the next lines if 5 is not greater than SYMBOL.

IFM
symbo/ lFM expression

Same as IFDEF except the expression must be negative for the next lines to be
assembled. For example:

IFM SYMBOL

assembles the next lines if SYMBOL is a negative number.

98

IFNZ
symbol lFNZ expression

Same as IFDEF except the expression must not equal zero for the next lines to be
assembled. For example:

IFNZ SYMBOL

assembles the next lines if SYMBOL does not equal zero.

IFP
symbo/ lFP expression

Same as IFDEF except the expression must be positive for the next lines to be
assembled. For example:

IFP SYMBOL

assembles the next lines if SYMBOL is a positive number.

IFT
symbo/ lFT expression

Same as IFDEF except the expression must be true (that is, bit 0 must be 1) for
the next lines to be assembled.

For example:

!FT 5+GT+SYMBOL

assembles the next lines IF 5 is greater than SYMBOL.

IFUND
symbo/ lFUND symbol

Same as IFT except the symbol must not be defined for the next lines to be
assembled. For example:

IFUND SYMBOL

assembles the next lines if the program does not define SYMBOL. If the symbol
is defined at all, it must be defined before the IFDEF.

DIRECTIVES

99

MODEL 111/4 ALDS

IFZ
symbol lFZ expression

Same as IFDEF except the expression must equal zero for the next lines to be
assembled. For example:

IFZ SYMBOL

assembles the next lines if SYMBOL equals zero.

INCLUDE
INCLUDE 'source filespec'

Inserts file spec at the point where INCLUDE appears in the program. The
Assembler will assemble the INCLUDEd file before processing the next
instruction.

The optional END instruction of the INCLUDEd file tells the Assembler to
continue assembling the main program. The END of the main program will
terminate the assembly.

You may specify only one filename per INCLUDE. You may use as many
INCLUDE instructions as you want.

For example:

INCLUDE 'PROG1'

inserts and assembles PROGl, a source file, before processing the next
instruction.

INCLUDE 'PROG1'
INCLUDE 'PROGZ'

inserts and assembles PROG 1; then inserts and assembles PROG2; then proceeds
with the next instruction.

INCLUDE is nestable to five levels. That is, file 1 can call file 2; 2 can call 3; 3
can call 4; and finally, 4 can call 5. But at no time can a called file (file 5) call a
calling file (file 4). This results in an Error 37 Open attempt for a file already
open.

ISECT
ISECTname

Begins an "index section" of EQU instructions, terminated by ENDI. If you
wish, you can name the section 1 or 2 (no other names are allowed).

100

Using an index section allows you to specify certain index symbols. You can then
use the index symbols to offset an index register.

For example, this is an index section named ISECT 1:

ISECT1
SYMBOL1 EQU s
SMBL3 EQU 3
SMBL26 EQU 26
SYMBL EQU 100

ENDI

It specifies four index symbols. Whenever the Assembler encounters one of these
index symbols enclosed in parentheses, it evaluates it as the expression:

(the contents of an index register+ index symbol)

You must specify which index register to use with the USING instruction. For
example:

LD
USING
LD

IY,7000H
1 , I Y
A , (SYMBOL 1)

The Assembler evaluates this as:

LD
USING1,
LD

IY,7000H
IY
A, (IY+SYMBOL1)

You cannot use a register name or a flag condition to name an index symbol.

LINK
LINK 'filespec'
LINK 'filespec(symbol)'

Tells the Linker to insert filespec, an absolute or relocatable object file, at the
point where LINK is encountered in the current program. This instruction is
similar to INCLUDE, except it applies only to the Linker. It allows you to link
one or more files together.

LINK must be at the end of your program section. (Only END, GLINK, or
another LINK can follow it.) Each LINK instruction can specify only one
filename. You can use as many LINK instructions as you want.

For example:

LINK
LINK
END

1 FILE1'
1 FILE2'
PROG

DIRECTIVES

101

MODEL 111/4 ALDS

inserts FILEl and then FILE2 at the end of your main program. FILEl and
FILE2 must both be assembled object files.

LINK 'TAX(TABLE) I

inserts a program section named TABLE which exists in a file named TAX at the
end of your program. TAX must be an object file. TABLE is a PSECT label.

The LINK statement is nestable to five levels. That is, file 1 can call file 2, 2 can
call 3, 3 can call 4, and finally, 4 can call 5. But at no time can a called file
(file 5) call a calling file (file 4).

LITORG
symbol LITORG location

Allows you to specify where to place literals used as operands. LITORG should
be used only once per assembly and placed in the same PSET as all references to
the literals, and after the last reference.

If you omit the optional location, the Assembler stores the literals in the current
location. If you include it, LITORG resets the location counter (in the same way
that ORG does) and stores the literals at the newly reset location.

The optional symbol labels this location. The Assembler assigns the remaining
instructions locations immediately following the literals.

All literal operands must be preceded by an equal sign (=) and surrounded with
single quotes('). For example:

LO HL,='INPUT THE ITEM NUMBER'

This instruction uses INPUT THE ITEM NUMBER as a literal operand. Here is
how you could use it in a program:

START PSECT 5200H
BEGIN LO HL ,='INPUT THE ITEM NUMBER'

LD B,(HU
INC HL
CALL PRTCHR
CALL E}<IT
LITORG
DEFM 'THIS IS A LONG TABLE OF PROMPTS'
DEFM 'INPUT THE ITEM NUMBER'
DEFM 'INPUT THE PRICE'
DEFM 'IS THERE A DISCOUNT?'
DEFM 'INPUT THE DISCOUNT'
END BEGIN

Notice that INPUT THE ITEM NUMBER is defin,ed by DEFM later in the
program. The Assembler stores it in two locations: (1) the location where

102

LITORG appears in the program, and (2) the location where DEFM 'INPUT
THE ITEM NUMBER' appears.

Note that if literals are used and the program ends with a LINK or GLINK,
LITORG is mandatory to place the literals before the LINK or GLINK
statement.

MACRO
name MACRO dummy parameter list

Begins a section of the program which defines a macro name. Use ENDM to end
this macro definition.

The optional dummy parameter list allows you to pass parameters to the macro.
You may use up to ten dummy parameters separated by commas. Each can be
only one character and must be preceded by a# sign.

Defining a macro allows you to "call" an entire block of instructions with a
single program line. This is useful when you will be using the same block many
times in your program.

For example, this is a macro definition:

SCROLL MACRO
LD
CALL
ENDM

At5
PROTECT

which defines a macro named SCROLL, that protects 5 lines from scrolling.
Every time the Assembler encounters SCROLL, it "expands" SCROLL into the
LD A,5 and CALL PROTECT instructions. That is, if this is your source
program:

LD
SCROLL
LD

•

At3

HL,DATA

The Assembler will interpret SCROLL as a macro call and expand it into the
appropriate instructions:

•
LD At3
LD At5
CALL PROTECT
LD HLtDATA
•

The next example defines a macro named ADNUM which acts on four dummy
parameters named #0, #1, #2, and #3:

DIRECTIVES

103

MODEL 111/4 ALDS

AONUM MACRO #0 t#1 ,#2 ,#3
ADO A,#0
ADO A ,#1
ADO A,#2
ADO A,#3
ENOM

This definition allows you to "pass" four values to ADNUM when you call
For example:

AONUM B t10 ,NUMB ,LST

calls ADNUM and passes four values to it. The Assembler expands this macro
call into:

ADO A,B
ADO A t10
ADO A,NUMB
ADO A,LST

Notice that B, the first value, replaces #0, the first parameter; 10 replaces #1;
NUMB replaces #2; and LST replaces #3.

When using a macro, remember that you must define it before you use it. You
might want to put all the macro definitions in one file and then INCLUDE or
REF them at the beginning of your main file.

We do not recommend that you use a macro name which is the same as an
extended mnemonic or directive name. If you do this, the Assembler will use the
definition you assigned the macro. This will of course give undesirable results.

When using dummy parameters, be sure not to insert them inside quoted strings.
If you do this, the Assembler will treat them as ordinary characters.

A macro cannot call another macro.

NOEND
NOEND

Ends the assembly of a non-executable program. The Assembler marks the
assembled code as load-only and will not execute the file when used as a
TRSDOS command. This command is useful for creating overlays to be loaded
with the CMDDOS system call.

NOFILL
NOFILL

Terminates the mode initiated by FILL.

104

NOLOAD
NOLOAD

Assembles the program sequentially in memory image form, rather than in the
standard TRSDOS object format. You must use NOLOAD as the first line of the
main source file (before comments, titles, PSECT, etc.), otherwise some
TRSDOS object code load headers may be placed into the file.

You cannot use NOLOAD with these features:

• the relocatable mode

• EXTERNal, or PUBLIC symbols

• LINK or GLINK

If you want the file to contain an accurate memory image of the program, you
must also avoid these instructions:

• DEFS(unless the FILL mode is on)

•ORG

• more than one PSECT

(These instructions change the value of the location counter but do not output
object code. This causes the load address and location counter to differ.)

OBJ
OBJ 'files pee'

Tells the Assembler that it should write the assembledfilespec to disk. The
Assembler will ignore this instruction if you specify an object filespec in the
assembly command line.

Example:

OBJ I ACCOUNTS I

Unless you specify an object filespec in the assembly command line, the above
instruction saves the assembled object program as ACCOUNTS.

ORG
symbol ORG location, boundary

Resets the Assembler's location counter to the specified location. For example, in
an absolute program:

ORG 6000H

resets the location to an absolute 6000H.

DIRECTIVES

105

MODEL 111/4 ALDS

In a .. e·.t(;~c·a~.an.~e program:

ORG G000H

resets the location counter to a relocatable 6000H. Assuming you link the
.,.,. .. ,.,... ...

0
m to an absolute start address of 5200H, the Linker determines the

address to be B200H (the sum of 5200 and 6000.)

The second parameter allows you to reset the location counter to a boundary
divisible by decimal 8, 16, 32, 64, 128, or 256. For example, if the value of
the counter is currently 6005H:

ORG $t4

resets the counter to 6008H, which is the next highest number divisible by
decimal 4.

Unlike many other assemblers, ORG will not initialize the location counter. You
need to use PSECT for this purpose.

ORG will not change the location counter from the relocatable to the absolute
mode, or vice versa. You must assemble absolute and relocatable programs as
different files.

location may not be an external symbol.

PATCH
PATCH

Fills the remaining bytes in the last sector in the assembled object file with FF's.
This reserves an area for patches.

The Assembler will print a message on pass 2 giving the address and length of
the patch area (if the file produces object code).

This must be the last command prior to the END directive. You cannot use it with
LINK, and it is for use with absolute assemblies only.

PRINT
PRINT command list

Controls what is printed or not printed in the assembly listing. You may use one
or more of the following commands, separated by commas or blank spaces:

ALL print all source lines (Same as ON ,MAC,CON)
ON - print all normal open code source instructions
OFF do not print anything except error messages and diagnostics until

(1) the end of the assembly or (2) a PRINT ON command

106

MAC - print all source lines generated in macro expansions those
which might be overridden by other PRINT options).

NOMAC- do not print source lines generated by macro expansions. Only the

CON

NOCON
LST

macro instruction itself will appear in the listing file.
- print all conditional assembly source lines, whether they generate

code or not.
print only the conditional assembly source lines that generate code.

- output the listing, regardless of what was on the command line. The
listing will be printed on the video, and if the D or P options were
specified, the listing will also go to disk or to the printer. You cannot
save this option with APUSH.

NOLST - do not output a listing, regardless of what was on the command line.
SHORT print only the first 6 bytes of object code generated by each line.
LONG print all of the object code generated, even if it requires several

lines.

For example:

PRINT MAC,SHORT

prints all the macro expansions in the assembly listing. It limits printing to the
first six bytes of object code for each line.

Only PRINT instructions specifying OFF, NOMAC, and NOCON will appear in
the listing.

You can use comments with PRINT.

PRINT defaults to ON, MAC, NOCON, LONG.

PSECT
symbol PSECT location

Initializes the Assembler's location counter to a relocatable zero or to the
absolute location you specify. The Assembler assembles all subsequent
instructions sequentially throughout the program.

The optional symbol labels the program section and can be up to six characters.
This symbol is for the Linker, and will be listed on the Linker map. The symbol
will not be defined by the Assembler and cannot be used in expressions.

PSECT begins an independent, executable "program section': You can have
several relocatable program sections in one program file. One program section
cannot use symbols from another program section unless you declare them
EXTERN and PUBLIC.

For example:

0000'
PAYROLL
BEGIN

PSECT
LD
•

A,3

DIRECTIVES

107

MODEL 111/4 ALDS

PAYABLE
0000'

PSECT
PUSH
•

END

A

This program has two sections: "PAYROLL'' and "PAYABLE': Both begin with
a relocatable 0000. When you link this file, the Linker assigns "PAYABLE"
addresses which immediately follow "PAYABLE': Since no symbols are
declared PUBLIC and EXTERNal, "PAYROLL'' and "PAYABLE" cannot share
the same symbols.

The following instructions do not have to be part of a program section:

• comments

• index sections

• conditional assembly instructions
• macro sections

• macro instructions (which will not affect the location counter)

• EQU or DEFL (as long as they do not reference the location counter)
• assembler directives (which do not affect the location counter)

You can define symbol (with EQU, for example) prior to your first PSECT. This
permits you to use a conditional assembly such as:

IFT RELOC
}{YZ PSECT

ELSE
\j\1"7
I\ I I.. PSECT 5200H

ENDIF

which starts a relocatable PSECT if RELOC equals 1, and an absolute PSECT if
RELOC equals 0. Doing this will create two PSECTs with the same name, one
being zero-length. This will appear on the Linker map but it will not affect the
assembly.

The PSECTs within an assembly must either be all relocatable or all absolute.
Relocatable and EXTERN expressions cannot be used in absolute assemblies.

The PSECT location you specify cannot be an external value.

PUBLIC
PUBLIC symbol list

Declares one or more symbols as ''public': This permits another program section
to use the same symbols.

When you assemble a program with public symbols, the Assembler will mark all
their definitions. Then, when you link it to an external program section, the
Linker will insert these definitions in the Linker Symbol Table.

108

For example:

PUBLIC LOOP1

declares LOOPl's definition to be public.

Another program can use the public symbol definitions provided it contains a
corresponding EXTERN directive.

You can substitute ENTRY for PUBLIC.

Symbols declared PUBLIC or GLOBAL must be defined on both passes, that is,
not defined with REF, ADISP, or EXT. The Linker may flag these symbols as
undefined.

Symbols defined with DEFL more than once should not be declared PUBLIC or
GLOBAL. The linker will flag these symbols as multiply defined.

QUIT
QUIT

Quits the assembly and returns to TRSDOS Ready. This Assembler only
recognizes this instruction at the second pass of a listing (specified by the L
assembly option). It will not save the object file.

RADIX
RADIX expression

Specifies expression as the default number base. That is, the Assembler will
interpret any numbers without a base suffix in the default base.

You may use any expression with a value of 2, 8, 10, or 16. Without RADIX, the
Assembler defaults to 10 (decimal).

For example:

RADD< 16

causes the Assembler to interpret all the numbers which do not have "b" or "d"
suffixes as hexadecimal numbers.

Remember that the Assembler uses the current default base to evaluate your
RADIX instruction. For example, if you want to change the default base of 16 to
10, use RADIX 10d or 0A, not RADIX 10. While in base 16, the Assembler
would evaluate the 10 as a hexadecimal 10.

Example:

RADI}·{
DEF6

10H
16

;use Hexadeci111al
; This is 16 (hex)=27 (deci111al)

DIRECTIVES

109

MODEL 111/4 ALDS

DEF6 lb This is 1 (binar>'>
DEF6 25 This is 25 (hex)=37 (decitr1al}
RADIX 10 Radix is still hex (10 hex=

18 deci1T1al)
RAD I}{ 10D ;ERROR 10D hex=2GS deci1r1al -

too larse.
RADI>(10d Radix is 1101,J deci111al
DEF6 16 This is a 1 binar,'
DEF6 lb This is also a 1 bi nan·
DEF6 25 This is 25 (decimal)=18 (hex)

REF
REF 'source filename'

Includes only the symbol definitions from the specified source file. This is useful
for referencing a file of EQU directives or MACROs.

REF tells the Assembler to INCLUDE the source file during Pass 1 only. After
processing the source file, the Assembler restores the location counter to its
original value. Thus, the Assembler uses the referenced file's symbols, but not its
assembled code.

For example:

REF 'TEST /SRC'

The Assembler will define macros and symbols contained in TEST/SRC. It will
not insert the code for TEXT/SRC.

The Assembler will not report any errors in the referenced file. Also, if there is a
conflict between symbols of the referenced file and the main program, the first
definitions will be used with no error message. You might want to use INCLUDE
instead of REF until all conflicts have been resolved.

Symbols defined in the REF file should not be declared PUBLIC or GLOBAL.
The Linker may flag these symbols as undefined.

RESLOC
RESLOC location

Resets the location counter to the location computed as:
,-----------------,

the value of the counter prior
to executin SETLOC +

For example, assuming the value of the location counter was 6000H prior to
SETLOC and there are two 3-byte instructions following SETLOC:

110

RESLOC

resets the location counter to 6006H.

SE LOC
SETLOC location

Temporarily changes the location counter's value to the absolute location
specified. The Assembler uses this changed location for defining symbols only. It
does not use the changed location for assembling the instructions.

For example:

7000

6000 POS

LO
SETLOC
PUSH

A,3
6000H
AF

The actual PUSH AF instruction is not stored at location 6000H. Rather, it is
stored at 7002H, the location which immediately follows LD A,3. However, the
Assembler defines POS, the symbol which labels the location of PUSH AF, as
6000H.

SETLOC is useful anytime you are writing a routine which you want to load in
one location, and then move and execute at a different location. By using
SETLOC, the Assembler defines this routine's symbols as if they were already in
their execution location.

For example, you might want to run a memory test from a very low memory
address. You cannot load it on top of TRSDOS. However, after loading it, you
can move and execute it in that location. Since TRSDOS will be overwritten, the
memory test must do its own input/output.

Using SETLOC, you could write the routine this way:

5100

500

560

5200

LOOP

LOBLOCK

PSECT 5000H
•

EQU
SETLOC
LO

•
•

RESLOC
EQU
•

$

500H
A,3

$-MOVE

;sETLOC block begins

;code for 1r1err1or>'
Hest

;sETLOC block ends

LO HL,MOVE ;moue SETLOC block
LO OE,LOOP Ho its Proper loop
LO BC,LOBLOCK
LOIR
JP LOOP
•

DIRECTIVES

111

MODEL 111/4 ALDS

Here, the Assembler defines LOOP as though it were at address 500H - the
address the program will eventually move it to. However, it actually assembles
the code for LOOP at address 5100H.

MOVE defines where the actual assembled code of the SETLOC block (ended by
RESLOC) begins. LDBLOCK defines the length of the SETLOC block by
subtracting MOVE from the current contents of the PC register. (The $ sign
indicates the current value of PC).

LDIR then moves the SETLOC block from location 5100, defined by MOVE, to
location 500. Since LOOP has already been defined as if it were at location 500,
you do not have to redefine it.

Note: If your program is relocatable, SETLOC still sets an absolute location.
You need to avoid using these instructions within the SETLOC block: ORG,
DEFS (unless the FILL mode is in effect), PSECT, and relocatable and external
expressions.

STOP
STOP

Stops the assembly listing. Press any key to continue the listing. Press (BREAK) to
abort it.

TIME
symbo/TIME

Stores the time in memory as a string beginning at the current address. The
optional symbol labels this address. For example if the time is 1:45 p.m. and 55
seconds when the Assembler reaches this instruction:

TIME

it will store the string 13.45.55 (Model 4) or 13:45:55 (Model III) in the next
eight bytes of memory.

TITLE
TITLE 'string'

Prints the specified string on the third line of each page in the assembly listing.
For example:

TITLE 'THIS IS THE TITLE'

prints THIS IS THE TITLE on the third line of every page.

112

If you are using both TITLE and HEADER, TITLE should .,,.,..,.,... 0 r1° HEADER
(otherwise the TITLE will not appear until the next page).

USING
USING index section name, index register
USING index register, expression
USING index register

Associates an index register- IX or IY - with the index sections. For example:

USING IX

associates IX with all the ISECTS.

You can optionally specify one (but not both) of the following:

• an index section name (1 or 2), as the only section to be associated with
the register

• an expression to be loaded into the register

For example:

USING 1 t rn

associates the IX register with ISECT 1 only.

USING rn ,DCB

loads IX with the value of DCB, then associates IX with all the ISECTs.

The index sections are specified with the ISECT instruction.

USING does not apply to any external program sections.

VERSION
VERSION

Prints the current time on the second line of the assembly listing heading.

* (block comment)
*

Tums on and off the block comment function. The asterisk must be in the first
column.

DIRECTIVES

113

MODEL 111/4 ALDS

When the Assembler encounters a line beginning with an asterisk, it begins
interpreting the lines as comments rather than instructions. The next asterisk ends
the block comment.

For example:

*
The following Profram is a •••
•
•
•
•
*

Note: Be careful when using the asterisk. One asterisk out of place near the
beginning of your program can cause the Assembler to treat most of your
program as a comment. If a block comment is placed before a header created by
the TITLE directive, the title will not appear on the first page of the assembly
listing.

114

Z-80 MNEMONICS

Chapter 9/

Z-80 Mnemonics
This section contains a description of each Z-80 mnemonic, organized as follows:

8 Bit Load Group
16 Bit Load Group
Exchange, Block Transfer and Search Group
8 Bit Arithmetic and Logical Group
General Purpose Arithmetic and CPU Control Groups
16 Bit Arithmetic Group
Rotate and Shift Group
Bit Set, Reset and Test Group
Jump Group
Call and Return Group
Input and Output Group

Please note than you can specify the PO (parity odd) and PE (parity even)
conditions with NV and V. For example:

JPPO, 1000H
JPNV, 1000H

Both of these instructions tell the Assembler to branch to 1000H if there is the
Parity is Odd, which means there is No Overflow.

JP PE, 1000H
JP V, 1000H

These instructions tell the Assembler to branch to 1000H if the Parity is Even,
which means there is an overflow.

115

Z-80 MNEMONICS

The Z-80 Instruction Set

Notation and Other Conventions
This section includes a detailed description of all the Z-80 assembly language
instructions. The first line of each of these pages shows the assembly language
opcode mnemonic followed by its operand(s). Some instructions have no
operands at all. Other instructions have one or two operands. Anything which is
capitalized should be copied exactly when you use the editor to write the
assembly language source code. Anything shown in lowercase letters will be
replaced by an appropriate register, number, or label. For example, the first
instruction described in the eight-bit load group is:

LDr,r'

LD is the mnemonic for the Load instruction. If you wish to move the contents of
register H into register A, the actual source code is

LDA,H

This should be read as "load register A with the contents of register H?'

A detailed explanation of the operand notation is given below, but in general you
should note that single lowercase letters are used for eight-bit numbers or
registers and double lowercase letters are used for 16-bit numbers or registers.
Also note that parentheses around a register pair indicates that the register pair is
to be used as a pointer to a memory location. For example, the instruction INC HL

means that 1 is to be added to the HL register pair. The instruction INC (HL) means
that 1 will be added to a number in memory whose address is found in register
pair HL.

Symbol

r

Symbol

qq
ss
dd
pp
rr

Symbol

n
DD

d
e

Specifies one of the registers

A, B, C, D, E, H, or L.

Specifies a register pair

BC,DE,HL,OrAF
BC,DE,HL,orSP
BC,DE,HL,orSP
BC, DE, IX, or SP
BC, DE, IY, or SP

Specifies a number or symbol in the range

0 to 255 (one byte)
0 to 65535 (two bytes)

128 to 127 (one byte)
- 126 to 129 (one byte)

117

MODEL 111/4 ALDS

Symbol

s
m
(nn)
b
cc

Specifies any of the following
r, n, (HL), (IX+ d), or (IY + d)
r, (HL) (IX+ d), or (IY + d)
Specifies the contents of memory location nn
Specifies an expression in the range (0,7)
Specifies the state of the Flags for conditional JR, JP, CALL and
RET instructions

Instruction Format Examples With Explanation

Format Example 1

LD r,(HL)
Operation: r ¢ {HL)
This is the shorthand description of the instruction. The arrow indicates that data
is moved into register r.

When you write the assembly language code, the lowercase r will be replaced by
A, B, C, D, E, H or L.

Format:

Mnemonic: LD Operands: r,(HL)

Object Code:

The object code for this instruction is one byte long. To figure out the object
code, replace bits 3, 4 and 5 with the appropriate numbers from the table. For
example:

Source Code
LD A,(HL)
LD B,(HL)
LD C,(HL)

Object Code

01111110
01000110
01001110

This instruction uses two machine (M) cycles. The first machine cycle consists of
four timing (T) states and the second machine cycle consists of three T states for
a total of seven T states. One T state takes approximately 250 nanoseconds for a
4MHz machine and 500 nanoseconds for a 2MHz machine. The execution time
(E.T.), in microseconds, is calculated for the TRS-80. (One microsecond is 10-6

seconds or 1/1,000,000 of a second.)

118

Z-80 MNEMONICS

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where
r identifies register A, B, C, D, E, Hor L, assembled as follows in the object
code:

Register r
A = 111
B = 000
C 001
D = 010
E 011
H 100
L = 101

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If register pair HL contains the number 75A1H, and memory address 75 AlH
contains the byte 58H, the execution of
LD C, (HL)
will result in 58H in register C.

Format Example 2

JP cc,nn
Operation: IF cc TRUE, PC¢ nn
The jump is made only if the condition cc is true. The arrow indicates that the
number nn is moved into the program counter PC. This will cause the program to
jump to address nn.
When you write the assembly language code, cc will be replaced by one of the
following: NZ, Z, NC, C, PO, PE, P or M. nn will be replaced by a number from
0 to 65535 or a label.

Format:

Mnemonic: JP Operands: cc, nn

Object Code:

i1:1;cc;cc;cc;o:1:01
ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

119

MODEL 111/4 ALDS

Note: The first n operand in this assembled object code is the low order byte of a
two-byte memory address.

The object code for this instruction is three bytes long. To figure out the object
code, replace bits 3, 4 and 5 of the first byte with the appropriate number from
the table. The second two bytes of the object code are the address jumped
to. For example:

Source Code
JP NZ, 0FF00H

JP M, 1002H

Object Code
11000010 C2H
00000000 OOH
11111111 FFH
11111010 FAH
00000010 02H
00010000 10H

Note that the low order, or right hand byte, of the address comes first in the
object code.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at
address nn. If condition cc is false, the Program Counter is incremented as usual,
and the program continues with the next sequential instruction. Condition cc is
programmed as one of eight status bits which correspond to condition bits in the
Flag Register (register F). These eight status bits are defined in the table below
which also specifies the corresponding cc bit fields in the assembled object code.

The Relevant Flag column shows the value the flag must have if the jump is to
occur.

cc Condition
• 000 NZ non zero

001 Z zero
010 NC no carry
011 C carry
100 PO parity odd or no overflow
101 PE parity even or overflow
110 P sign positive
111 M sign negative

M cycles: 3 T states: 10(4,3,3)

Condition Bits Affected: None

Example:

Relevant
Flag

Z =0
Z = 1
C =0
C = 1
P/V 0
P/V 1
S = 0
S = 1

4 MHz E.T.: 2.50

If the Carry Flag (C flag in the F register) is set and the contents of address 1520
are 03H, after the execution of

120

Z-80 MNEMONICS

JP C,1520H

the Program Counter will contain 1520H, and on the next machine cycle the CPU
will fetch from ~::H1r·e:~~ 1520H the byte 03H. In other words, program execution
jumps to the instruction at 1520H.

Format Example 3

CPIR
Operation: A- (HL), HL ¢ HL + 1, BC¢ BC -1
The shorthand description indicates that three different things are happening:

1. BC is decremented

2. HL is incremented

3. A byte in memory is subtracted from the A register (but the results are not
saved).

Format:

Mnemonic: CPIR Operands:

Object Code:

1<<< 0 >>:0>J
11:0:i:i:0:0:0:11

ED

Bl

The assembly language instruction has no operands.

The object code is two bytes long.

Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, a
condition bit is set. The HL is incremented and the Byte Counter (register pair
BC) is decremented. If decrementing causes the BC to go to zero or if A (HL),
the instruction is terminated. If BC is not zero and A 4= (HL), the program
counter is decremented by 2 and the instruction is repeated. Note that if BC is set
to zero before the execution, the instruction will loop through 64K bytes, if no
match is found. Also, interrupts will be recognized after each data comparison.

For BC 4= 0 and A 4= (HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

121

MODEL 111/4 ALDS

For BC 0 or A=(HL):
M 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

total execution time of this instruction depends on how long it takes to find
the byte being searched for and the length of the block being searched. If the
instruction loops three times before BC= 0 or A (HL), then there will be 58
(2x21 + 16) timing (T) states executed.

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if BC becomes zero; reset otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 1111H, the Accumulator contains F3H, the Byte
Counter contains 0007H, and memory locations have these contents:
(1111H) 52H
(1112H) : 00H
(1113H) : F3H
then after the execution of
CPIR

the contents of register pair HL will be 1114H, the contents of the Byte Counter
will be 0004H. Since BC =I= 0, the P/V flag is still set. This means that it did not
search through the whole block before the instruction stopped. Since a match
was found, the Z flag is set.
The CPIR instruction will affect five of the six condition codes.

122

8 BIT LOAD GROUP

8 Bit Load Group

LD r,r' LoaD

Operation: r ¢ r'

Format:

Mnemonic: LD Operands: r, r'

Object Code:

Description:

The contents of any register r' are loaded into any other register r. Note: r, r'
identifies any of the registers A, B, C, D, E, H, or L, assembled as follows in the
object code:

Register r, r'

A 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 1 T states: 4 4 MHz E.T.: 1.0

Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E register contains 10H, the
instruction

LD H,E

would result in both registers containing 10H.

123

MODEL 111/4 ALDS

LD r,n
Operation: r ¢ n

Format:

Mnemonic: LD

Object Code:

Operands: r, n

lo:O>>>:r:i:ol

ln:n:n:n:n:n:n:nl

Description:

LoaD

The eight-bit integer n is loaded into any register r, where r identifies register A,
B, C, D, E, H or L, assembled as follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L 101

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example 1:

After the execution of

LD E,A5H

4 MHz E.T.: 1.75

the contents of register E will be A5H.

Example 2:

After the execution of

LD A,0

register A will contain zero.

124

8 BIT LOAD GROUP

LD r,(HL) LoaD

Operation: r¢ (HL)

Format:

Mnemonic: LD Operands: r, (HL)

Object Code:

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where
r identifies register A, B, C, D, E, H or L, assembled as follows in the object
code:

Register r
A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

If register pair HL contains the number 75A1H, and memory address 75A1H
contains the byte 58H, the execution of

LD C,(HL)

will result in 58H in register C.

LD r,(IX+d) LoaD

Operation: r ¢ (IX + d)

Format:

Mnemonic: LD Operands: r, (IX+ d)

125

MODEL 111/4 ALDS

Object Code:

l<<0:< 1 '.i:O'.il
/o'.i>>>'.i'.i:0/
1d:d:d:d:d:d:d:d1

Description:

DD

The operand (IX+ d) (the contents of the Index Register IX summed with a
displacement integer d) is loaded into register r, where r identifies register A, B,
C, D, E, Hor L, assembled as follows in the object code:

Register r

A = 111
B = 000
C = 001
D 010
E 011
H = 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the instruction

LD B,(IX + 19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

A typical use of this instruction is shown below. If TABL is a location in memory
this program will load the first four bytes of the table into registers A, B, C and
D.

LD
LD
LD
LD
LD

126

IX, TABL
A, (IX +0)
B, (IX+ 1)
C, (IX+2)
D, (IX+3)

; IX points to the table
; Load first byte
; Load second byte
; Load third byte
; Load fourth byte

8 BIT LOAD GROUP

LD r,(IY +d)
Operation: r ¢ (IV + d)

Format:

Mnemonic: LD Operands: r, (IY + d)

Object Code:

1i:i:i:i:i:i:0: 1 I

I O : 1 : r : r : r : I : 1 : 0 I

1d:d:d:d:d:d:d:d1

Description:

FD

LoaD

The operand (IY + d) (the contents of the Index Register IY summed with a two's
complement displacement integer d) is loaded into register r, where r identifies
register A, B, C, D, E, H, or L, assembled as follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IY contains the number 25AFH, the instruction

LD B,(IY + 19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in
register B also containing 39H.

127

MODEL 111/4 ALDS

LD (HL),r LoaD

Operation: (HL) ¢ r

Format:

Mnemonic: LO Operands: (HL), r

Object Code:

Description:

The contents of register r are loaded into the memory location specified by the
contents of the HL register pair. The symbol r identifies register A, B, C, 0, E, H
or L, assembled as follows in the object code:

Register r
A = 111
B = 000
C = 001
0 = 010
E = 011
H = 100
L = 101

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If the contents of register pair HL specify memory location 2146H, and the B
register contains the byte 29H, after the execution of

LO (HL),B

memory address 2146H will also contain 29H.

LD (IX+ d),r LoaD

Operation: (IX+ d) ¢ r

Format:

Mnemonic: LO Operands: (IX+ d), r

128

8 BIT LOAD GROUP

Object Code:

11:i:o:i:i:i:o:11
lo:i;i:i:o:r>'.rl
1d:d:d:d:d:d:d:d1
Description:

DD

The contents of register r are loaded into the memory address specified by the
contents of Index Register IX summed with d, a two's complement displacement
integer. The symbol r identifies register A, B, C, D, E, H or L, assembled as
follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L 101

M cycles: 5 T states: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 4.75

If the C register contains the byte 1 CH, and the Index Register IX contains
3100H, then the instruction

LD (IX+6H), C

will perform the sum 3100H + 6H and will load 1 CH into memory location
3106H.

LD (IV +d),r LoaD

Operation: (IV + d) ¢ r

Format:

Mnemonic: LD Operands: (IY + d), r

129

MODEL 111/4 ALDS

Object Code:

/1' I l> IO 1/ FD

Jo>'.i>:O>>>I
1d:d:d:d:d:d:d:d1

Description:

The contents of register r are loaded into the memory address specified by the
sum of the contents of the Index Register IY and d, a two's complement
displacement integer. The symbol r is specified according to the following table.

Register r

A 111
B 000
C 001
D = 010
E = 011
H 100
L = 101

M cycles: 5 T states: 19(4,4,3,5,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 4.75

If the C register contains the byte 48H, and the Index Register IY contains
2A 11 H, then the instruction

LD (IY +4H),C

will perform the sum 2A11H + 4H, and will load 48H into memory location
2A15.

LD (HL),n LoaD

Operation: (HL) ¢ n

Format:

Mnemonic: LD Operands: (HL), n

130

8 BIT LOAD GROUP

Object Code:

10:0:<<0:<<ol 36

ln:n:n:n:n:n:n:nl

Description:

Integer n is loaded into the memory address specified by the contents of the HL
register pair.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the HL register pair contains 4444H, the instruction

LD (HL),28H

will result in the memory location 4444H containing the byte 28H.

LD (IX +d),n
Operation: (IX+ d) ¢ n

Format:

Mnemonic: LD Operands: (IX+ d), n

Object Code:

1i;i;o;i;i:i: 0 :il
1°:0>>:0>>:0I
1d:d:d:d:d:d:d:d1

ln:n:n:n:n:n:n:nl

DD

36

Load

131

MODEL 111/4 ALDS

Description:

The n operand is loaded into the memory address specified by the sum of the
contents of the Index Register IX and the two's complement displacement
operand d.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the instruction

LD (IX+5H),5AH

would result in the byte 5AH in the memory address 219FH.
(219FH = 219AH + 5H.)

LD (IV +d),n
Operation: (IV+ d) ¢ n

Format:

Mnemonic: LD Operands: (IY + d), n

Object Code:

l<<<<<<0:11 FD

10:0:i:i:o:i:i:01 36

1d:d:d:d:d:d:d:d1

ln:n:n:n:n:n:n:nl

Description:

LoaD

Integer n is loaded into the memory location specified by the contents of the
Index Register summed with a two's complement displacement integer d.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

132

8 BIT LOAD GROUP

Example:

If the Index Register IY contains the number A940H, the instruction

LD (IY + 10H),97H

would result in byte 97H in memory location A950H.

LO A,(BC)
Operation: A¢ (BC)

Format:

Mnemonic: LD Operands: A, (BC)

Object Code:

I o : o : o : o : 1 : o : 1 : o I 0A

Description:

LoaD

The contents of the memory location specified by the contents of the BC register
pair are loaded into the Accumulator.

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 1.75

If the BC register pair contains the number 4747H, and memory address 4747H
contains the byte 12H, then the instruction

LD A,(BC)

will result in byte 12H in register A.

LO A,(OE) LoaD

Operation: A¢ (DE)

Format:

Mnemonic: LD Operands: A, (DE)

133

MODEL 111/4 ALDS

Object Code:

I O : 0 : 0 : l : l : 0 : l : 0 I lA

Description:

The contents of the memory location specified by the register pair DE are loaded
into the Accumulator.

M cycles: 2 T states: 7(4,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: l.75

If the DE register pair contains the number 30A2H and memory address 30A2H
contains the byte 22H, then the instruction

LD A,(DE)

will result in byte 22H in register A.

LD A,(nn)
Operation: A¢ (nn)

Format:

Mnemonic: LD Operands: A, (nn)

Object Code:

jo:0'.i'.i:i'.O:i'.ol
ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

LoaD

3A

The contents of the memory location specified by the operands nn are loaded into
the Accumulator. The first n operand is the low order byte of a two-byte memory
address.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz E.T.: 3.25

134

8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of memory address 8832H is byte 04H, after the instruction

LD A,(8832H)

byte 04H will be in the Accumulator.

LO (BC),A LoaD

Operation: (BC) ¢A

Format:

Mnemonic: LD Operands: (BC), A

Object Code:

Description:

The contents of the Accumulator are loaded into the memory location specified
by the contents of the register pair BC.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

If the Accumulator contains 7 AH and the BC register pair contains 1212H the
instruction

LD (BC),A

will result in 7 AH being in memory location 1212H.

LO (OE),A LoaD

Operation: (DE) ¢ A

Format:

Mnemonic: LD Operands: (DE), A

135

MODEL 111/4 ALDS

Object Code:

IO: 0: 0: I : 0: 0: l : 0 I 12

Description:

The contents of the Accumulator are loaded into the memory location specified
by the DE register pair.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the Accumulator contains byte
A0H, the instruction

LD (DE),A

will result in A0H being in memory location 1128H.

LD (nn),A
Operation: (nn) ¢A

Format:

Mnemonic: LD Operands: (nn), A

Object Code:

!o'.o>'.i:O:O:i:o!
ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

32

LoaD

The contents of the Accumulator are loaded into the memory address specified by
the operands nn. The first n operand in the assembled object code above is the
low order byte of nn.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz E.T.: 3.25

136

8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the execution of
LD (3141H),A

D7H will be in memory location 3141H.

LDA,I
Operation: A ¢ I

Format:

Mnemonic: LD

Object Code:

Operands: A, I

!1:i;i;o;i;i;o:i1 ED

I o ;i ;o ;i ;o ;i ;i ;i I 57

Description:

LoaD

The contents of the Interrupt Vector Register I are loaded into the Accumulator.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected:

S: Set if I-Reg. is negative; reset otherwise
Z: Set if I-Reg. is zero; reset otherwise
H: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected

Note: If an interrupt occurs during execution of this instruction, the Parity flag
will contain a 0.

Example:

If the Interrupt Vector Register contains the byte 4AH, after the execution of

LD A,I

the accumulator will also contain 4AH.

137

MODEL 111/4 ALDS

LDA,R LoaD

Operation: A¢ R

Format:

Mnemonic: LD Operands: A, R

Object Code:

l1:i:i:o:i:i:o:i1 ED

10:i:o:i:i:i:i:11 5F

Description:

The contents of Memory Refresh Register R are loaded into the Accumulator.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative; reset otherwise
Z: Set if R-Reg. is zero; reset otherwise
H: Reset
P/V: Contains contents of IFF2
N: Reset
C: Not affected

Example:

If the Memory Refresh Register contains the byte 4AH, after the execution of

LD A,R

the Accumulator will also contain 4AH.

LD l,A LoaD

Operation: I ¢ A

Format:

Mnemonic: LD Operands: I, A

138

8 BIT LOAD GROUP

Object Code:

I< 1 : 1 : 0: 1 : 1 :o: 1 I ED

I O : 1 : 0 :0: 0: 1 : 1 : 1 I 47

Description:

The contents of the Accumulator are loaded into the Interrupt Control Vector
Register, I.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected: None

Example:

If the Accumulator contains the number 81H, after the instruction

LD I,A

the Interrupt Vector Register will also contain 81H.

LDR,A
Operation: R ¢ A

Format:

Mnemonic: LD Operands: R, A

Object Code:

1i:i:i:o:i:i:o:11 ED

10:i:o:o:i:i:i:i1 4F

Description:

LoaD

The contents of the Accumulator are loaded into the Memory Refresh register R.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected: None

139

MODEL 111/4 ALDS

Example:

If the Accumulator contains the number B4H, after the instruction
LD R,A
the Memory Refresh Register will also contain B4H.

140

16 BIT LOAD GROUP

16 Bit Load Group

LD dd,nn
Operation: dd ¢ nn

Format:

Mnemonic: LD Operands: dd, nn

Object Code:

lo:o:ct:ct:o:o:o: 1 I

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

LoaD

The two-byte integer nn is loaded into the dd register pair, where dd defines the
BC, DE, HL, or SP register pairs, assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low order byte.

M cycles: 3 T states: 10(4,3,3)

Condition Bits Affected: None

Example:

After the execution of

LD HL,5000H

4 MHz E.T.: 2.50

the contents of the HL register pair will be 5000H.

141

MODEL 111/4 ALDS

After the execution of

LD BC,2501H

the BC register will contain 2501 H.

LD IX,nn
Operation: IX¢ nn

Format:

Mnemonic: LD Operands: IX, nn

Object Code:

11 >:0>>>:0>I
lo:0:<0:0:0:0:rl

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

DD

21

Integer nn is loaded into the Index Register IX. The first n operand in the
assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3)

Condition Bits Affected: None

Example:

After the instruction

LD IX,45A2H

4 MHz E.T.: 3.50

the Index Register will contain integer 45A2H.

142

LoaD

16 BIT LOAD GROUP

LD IY,nn
Operation: IV¢ nn

Format:

Mnemonic: LD Operands: IY, nn

Object Code:

11 '.i>>>>>>I
I o : o : 1 : o : o : o : o : 1 I

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

FD

21

Integer nn is loaded into the Index Register IY. The first n operand in the
assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

After the instruction:

LD IY,7733H

the Index Register IY will contain the integer 7733H.

LD HL,(nn)
Operation: H ¢ (nn + 1), L ¢ (nn)

Format:

Mnemonic: LD Operands: HL, (nn)

LoaD

LoaD

143

MODEL 111/4 ALDS

Object Code:

10:0:i:o:i:o:1:0I 2A

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

The contents of memory address nn are loaded into the low order portion of
register pair HL (register L), and the contents of the next highest memory
address (nn + 1) are loaded into the high order portion of HL (register H). The
first n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4 MHz E.T.: 4.00

Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains AlH, after the
instruction
LD HL,(4545H)
the HL register pair will contain A137H.

LD dd,(nn)
Operation: ddH ¢ (nn + 1), ddL ¢ (nn)

Format:

Mnemonic: LD Operands: dd, (nn)

Object Code:

1i:i:i:o:i: 1:o:i1
I0:<<<<0:< 1 1
ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

144

ED

LoaD

16 BIT LOAD GROUP

Description:

The contents of address nn are loaded into the low order portion of register pair
dd, and the contents of the next highest memory address (nn + 1) are loaded into
the high order portion of dd. Register pair dd defines BC, DE, HL, or SP register
pairs, assembled as follows in the object code:

Pair dd

BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code above is the low order byte of
(nn).

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example 1:

If Address 2130H contains 65H and address 2131M contains 78H after the
instruction

LD BC,(2130H)

the BC register pair will contain 7865H.

Example 2:

If address FFFE contains 01 H and address FFFF contains 02H, then after the
instruction

LD SP,(0FFFEH)

the SP will contain 0201H.

LD IX,(nn) LoaD

Operation: IXH ¢ (nn 1), IXL¢ (nn)

Format:

Mnemonic: LD Operands: IX, (nn)

145

MODEL 111/4 ALDS

Object Code:

!1'.1'.o'.r'.i'.r'.o>I

lo'.o'.i'.o'.i'.o'.r'.oj

ln>'.n'.n'.n'.n>>I

ln'.n'.n'.n'.n'.n'.n'.nl

Description:

DD

2A

The contents of the address nn are loaded into the low order portion of Index
Register IX, and the contents of the next highest memory address (nn + 1 are
loaded into the high order portion of IX. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6066H contains 92H and address 6067H contains DAH, after the
instruction

LD IX,(6066H)

the Index Register IX will contain DA92H.

LD IY,(nn) LoaD

Operation: IY H ¢ (nn + 1), IY L ¢ (nn)

Format:

Mnemonic: LD Operands: IY, (nn)

146

16 BIT LOAD GROUP

Object Code:

11 >>>>>:0>I
10:0:i:o:i:o:i: 0 1
ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

FD

2A

The contents of address nn are loaded into the low order portion of Index
Register IY, and the contents of the next highest memory address (nn + 1) are
loaded into the high order portion of IY. The first n operand in the assembled
object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the
instruction

LD IY, (6666H)

the Index Register IY will contain DA92H.

LD (nn),HL LoaD

Operation: (nn + 1) ¢ H, (nn) ¢ L

Format:

Mnemonic: LD Operands: (nn), HL

147

MODEL 111/4 ALDS

Object Code:

!o:O:<O:O:o:i:ol 22

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

The contents of the low order portion of register pair HL (register L) are loaded
into memory address nn, and the contents of the high order portion of HL
(register H) are loaded into the next highest memory address (nn + 1). The first n
operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4 MHz E.T.: 4.00

Condition Bits Affected: None

Example 1:

If the content of register pair HL is 483AH, after the instruction

LD (B229H),HL

address B229H will contain 3AH, and address B22AH will contain 48H.

Example 2:

If the register pair HL contains 504AH, then after the instruction

LD (PLACE),HL

the address PLACE will contain 4AH and address PLACE+ 1 will contain 50H.

Note: PLACE is a label which must be defined elsewhere in the program.

LD (nn),dd LoaD

Operation: (nn + 1) ¢ ddH, (nn) ¢ ddL

Format:

Mnemonic: LD Operands: (nn), dd

148

16 BIT LOAD GROUP

Object Code:

1i:i:i:o:i:i:•:i1 ED

1°:i:a:a:•:•:i:i1
ln:n:n:n:n:n:n:nl

/n:n:n:n:n:n:n:nl

Description:

The low order byte of register pair dd is loaded into memory address (nn); the
upper order byte is loaded into memory address (nn + 1). Register pair dd defines
either BC, DE, HL, or SP, assembled as follows in the object code:

Pair dd
BC 00
DE 01
HL 10
SP 11

The first n operand in the assembled object code is the low order byte of a two
byte memory address.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If register pair BC contains the number 4644H, the instruction

LD (1000H),BC
will result in 44H in memory location 1000H, and 46H in memory
location 1001 H.

LD (nn),IX
Operation: (nn + 1) ¢ IXH, (nn) ¢ IXL

Format:

Mnemonic: LD Operands: (nn), IX

LoaD

149

MODEL 111/4 ALDS

Object Code:

I i: i: o'. i'. i: i: o'. I I DD

10:o'.i'.O:O:O:<ol 22

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

Description:

The low order byte in Index Register IX is loaded into memory address nn; the
upper order byte is loaded into the next highest address (nn + 1). The first n
operand in the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IX contains 5A30H, after the instruction

LD (4392H),IX

memory location 4392H will contain number 30H and location 4393H will
contain 5AH.

LD (nn),IY LoaD

Operation: (nn + 1) ¢ IV H, (nn) ¢ IV L

Format:

Mnemonic: LD Operands: (nn), IY

150

16 BIT LOAD GROUP

Object Code:

J1;i;i;i;i;i;o;i1 FD

Jo:O'.i:O:O:O'.i:01 22

Jn:n:n:n:n:n:n:nl

Jn:n:n:n:n:n:n:nl

Description:

The low order byte in Index Register IY is loaded into memory address nn; the
upper order byte is loaded into memory location (nn + 1). The first n operand in
the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IY contains 4174H after the instruction

LD 8838H,IY

memory location 8838H will contain number 74H and memory location 8839H
will contain 41H.

LD SP,HL LoaD

Operation: SP¢ HL

Format:

Mnemonic: LD Operands: SP, HL

Object Code:

F9

Description:

The contents of the register pair HL are loaded into the Stack Pointer SP.

151

MODEL 111/4 ALDS

M cycles: 1 T states: 6 4 MHz E.T.: 1.50

Condition Bits Affected: None

Example:

If the register pair HL contains 442EH, after the instruction

LD SP,HL

the Stack Pointer will also contain 442EH.

LD SP,IX
Operation: SP¢ IX

Format:

Mnemonic: LD Operands: SP, IX

Object Code:

1i;i;o:i:i:i:0:1I
l<<<<<0:0: 1

1

Description:

DD

F9

LoaD

The two-byte contents of Index Register IX are loaded into the Stack Pointer SP.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH, after the instruction

LD SP,IX

the contents of the Stack Pointer will also be 98DAH.

152

LD SP,IY
Operation: SP¢ IV

Format:

Mnemonic: LD Operands: SP, IY

Object Code:

11 '.i'.i'.i'.i'.i:O'.il
11:i;i;i;i;o:o:il
Description:

16 BIT LOAD GROUP

LoaD

FD

F9

The two byte contents of Index Register IY are loaded into the Stack Pointer SP.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If Index Register IY contains the integer A227H, after the instruction

LD SP,IY

the Stack Pointer will also contain A227H.

PUSHqq
Operation: (SP - 2) ¢ qqL, (SP - 1) ¢ qqH

Format:

Mnemonic: PUSH Operands: qq

Object Code:

153

MODEL 111/4 ALDS

Description:

The contents of the register pair qq are pushed into the external memory LIFO
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit
address of the current "top" of the Stack. This instruction first decrements the
SP and loads the high order byte of register pair qq into the memory address now
specified by the SP, then decrements the SP again and loads the low order byte of
qq into the memory location corresponding to this new address in the SP. The
operand qq means register pair BC, DE, HL, or AF, assembled as follows in the
object code:

Pair qq
BC 00
DE 01
HL 10
AF 11

M cycles: 3 T states: 11(5,3,3) 4 MHz E.T.: 2.75

Condition Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH AF

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. In other words the number from
register pair AF is now on the top of the stack, and the stack pointer is pointing
to it.

Before:

Register AF Address Stack
2233 1007 FF

1008 35

Stack Pointer
1007

After: PUSH AF

Register AF Address Stack
2233 1005 33

1006 22
1007 FF
1008 35

Stack Pointer

1005

154

16 BIT LOAD GROUP

PUSH IX
Operation: (SP - 2) ¢ IXL, (SP - 1) ¢ IXH

Format:

Mnemonic: PUSH Operands: IX

Object Code:

1i:i:a:i:i:i:0: 1 I
li'.i'.i'.0: 0 >:0>I
Description:

DD

E5

The contents of the Index Register IX are pushed into the external memory LIFO
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit
address of the current "top" of the Stack. This instruction first decrements the
SP and loads the high order byte of IX into the memory address now specified by
the SP, then decrements the SP again and loads the low order byte into the
memory location corresponding to this new address in the SP.

M cycles: 3 T states: 15(4,5,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 3.75

If the Index Register IX contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH IX

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. The number from the IX register
pair is now on the top of the stack.

Before:

Register IX

2233

Stack Pointer

1007

Address

1007
1008

Stack

FF
35

155

MODEL 111/4 ALDS

After: PUSH IX

Register IX Address Stack

2233 1005 33
1006 22
1007 FF
1008 35

Stack Pointer

1005

PUSH IV
Operation: (SP - 2) ¢ IV L, (SP - 1) ¢ IV H

Format:

Mnemonic: PUSH Operands: IY

Object Code:

l<<<<<<0: 1 1
11 >>:0:0>:0>I
Description:

FD

E5

The contents of the Index Register IY are pushed into the external memory LIFO
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit
address of the current "top" of the Stack. This instruction first decrements the
SP and loads the high order byte of IY into the memory address now specified by
the SP; then decrements the SP again and loads the low order byte into the
memory location corresponding to this new address in the SP.

M cycles: 4 T states: 15(4,5,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 3.75

If the Index Register IY contains 2233H and the Stack Pointer contains 1007H,
after the instruction

PUSH IY

156

16 BIT LOAD GROUP

memory address 1006H will contain 22H, memory address 1005H will contain
33H, and the Stack Pointer will contain 1005H. The number from register pair
IY is now on the top of the stack.

Before:

Register IY
2233

Stack Pointer
1007

After: PUSH

Register IY
2233

Stack Pointer
1005

POPqq

Address
1007
1008

IY

Address
1005
1006
1007
1008

Stack
FF
35

Stack
33
22
FF
35

Operation: qqH ¢(SP+ 1), qql ¢ (SP)

Format:

Mnemonic: POP Operands: qq

Object Code:

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into register pair qq. The Stack Pointer (SP) register pair holds the 16-bit
address of the current "top" of the Stack. This instruction first loads into the
low order portion of qq, the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of qq and the SP
is now incremented again. The operand qq defines register pair BC, DE, HL, or
AF, assembled as follows in the object code:

157

MODEL 111/4 ALDS

Pair r

BC 00
DE 01
HL 10
AF 11

M cycles: 3 T states: 10(4,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 2.50

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and
location 1001H contains 33H, the instruction

POP HL

will result in register pair HL containing 3355H, and the Stack Pointer
containing 1002H. In other words register pair HL contains the number which
was on the top of the stack, and the stack pointer is pointing to the current top of
the stack.

Before:

Register HL
2233

Stack Pointer
1000

After: POP

Register HL

3355

Stack Pointer
1002

POPIX

Address
1000
1001
1002
1003

HL

Address

1002
1003

Stack

55
33
A4
62

Stack

A4
62

Operation: IXH ¢(SP+ 1), IXL¢ (SP)

Format:

Mnemonic: POP Operands: IX

158

16 BIT LOAD GROUP

Object Code:

DD

El

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into Index Register IX. The Stack Pointer (SP) register pair holds the 16-
bit address of the current "top" of the Stack. This instruction first loads into the
low order portion of IX the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IX. The SP is
now incremented again.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and
location 1001H contains 33H, the instruction

POP IX

will result in the Index Register IX containing 3355H, and the Stack Pointer
containing 1002H. Register pair IX contains the number which used to be on the
top of the stack.

Before:

Register IX Address Stack

24F9 1000 55
1001 33
1002 A4
1003 62

Stack Pointer

1000

159

MODEL 111/4 ALDS

After: POP

Register IX
3355

Stack Pointer

1002

POPIY

IX

Address
1002
1003

Stack
A4
62

Operation: IY H ¢(SP+ 1),IY L ¢ (SP)

Format:

Mnemonic: POP Operands: IY

Object Code:

11 '.i>'.i'.i'.i:O'.il
11;i;i:o;o;o;o;11
Description:

FD

El

The top two bytes of the external memory LIFO (last-in, first-out) Stack are
popped into Index Register IY. The Stack Pointer (SP) register pair holds the
16-bit address of the current "top" of the Stack. This instruction first loads into
the low order portion of IY the byte at the memory location corresponding to the
contents of SP; then SP is incremented and the contents of the corresponding
adjacent memory location are loaded into the high order portion of IY. The SP is
now incremented again.

M cycles: 4 T states: 14(4,4,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 3.50

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and
location 1001H contains 33H, the instruction

POP IY

will result in Index Register IY containing 3355H, and the Stack Pointer
containing 1002H. Register pair IY contains the number which used to be on the
top of the stack.

160

16 BIT LOAD GROUP

Before:

Register IY Address Stack
24F9 1000 55

1001 33
1002 A4
1003 62

Stack Pointer
1000

After: POP IY

Register IY Address Stack
3355 1002 A4

1003 62

Stack Pointer
1002

161

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Exchange, Block 'fransfer
and Search Group

EX DE,HL
Operation: DE QQ HL

Format:

Mnemonic: EX Operands: DE, HL

Object Code:

Description:

The two-byte contents of register pairs DE and HL are exchanged.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example:

EXchange

If the content of register pair DE is the number 2822H, and the content of the
register pair HL is number 499AH, after the instruction

EX DE,HL

the content of register pair DE will be 499AH and the content of register pair HL
will be 2822H.

EXAF,AF' EXchange

Operation: AF¢• AF'

Format:

Mnemonic: EX Operands: AF, AF'

163

MODEL 111/4 ALDS

Object Code:

08

Description:

The two-byte contents of the register pairs AF and AF' are exchanged.
(Note: register pair AF' consists of registers A' and F. ')

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example:

If the content of register pair AF is number 9900H, and the content of register
pair AF' is number 5944H, after the instruction
EX AF,AF'

the contents of AF will be 5944H, and the contents of AF' will be 9900H.

EXX EXchange

Operation: (BC) ¢1; (BC'), (DE) ¢1; (DE'), (HL) ¢1; (HL')

Format:

Mnemonic: EXX Operands:

Object Code:

D9

Description:

Each two-byte value in register pairs BC, DE, and HL is exchanged with the two
byte value in BC,' DE,' and HL,' respectively.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example 1:

If the contents of register pairs BC, DE, and HL are the numbers 445AH,
3DA2H, and 8859H, respectively, and the contents of register pairs BC,' DE,'
and HL' are 0988H, 9300H, and 00E7H, respectively, after the instruction

164

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

EXX

the contents of the register pairs will be as follows: BC: 0988H; DE: 9300H; HL:
00E7H; BC': 445AH; DE': 3DA2H; and HL': 8859H.

Example 2:

If the contents of the registers are as shown:

BC 111 IH
DE 2222H
HL 3333H
BC' 4444H
DE' 5555H
HL' 6666H

Then after an EXX instruction the registers will contain:

BC 4444H
DE 5555H
HL 6666H
BC' 1111H
DE' 2222H
HL' 3333H

EX (SP), HL EXchange

Operation: H ¢•(SP+ 1), L ¢• (SP)

Format:

Mnemonic: EX Operands: (SP),HL

Object Code:

E3

Description:

The low order byte contained in register pair HL is exchanged with the contents
of the memory address specified by the contents of register pair SP (Stack
Pointer), and the high order byte of HL is exchanged with the next highest
memory address (SP+ 1).

M cycles: 5 T states: 19(4,3,4,3,5) 4 MHz E.T.: 4.75

Condition Bits Affected: None

165

MODEL 111/4 ALDS

Example:

If the HL register pair contains 7012H, the SP register pair contains 8856H, the
memory location 8856H contains the byte llH, and the memory location 8857H
contains the byte 22H, then the instruction

EX (SP),HL

will result in the HL register pair containing number 2211H, memory location
8856H containing the byte 12H, the memory location 8857H containing the byte
70H and the Stack Pointer containing 8856H.

Before:

Register HL

7012

Stack Pointer

8856

After:

Register HL

2211

Stack Pointer

8856

Address

8856
8857
8858

Address

8856
8857
8858

EX (SP),IX

Stack

11
22

Stack

12
70

Operation: IXH ¢Q (SP+ 1), IXL ¢Q (SP)

Format:

Mnemonic: EX Operands: (SP), IX

Object Code:

!1:i:o:i:i:i:o:i1
1i:i:i:o:o:o:i: 1 1

166

DD

E3

EXchange

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Description:

The low order byte in Index Register IX is exchanged with the contents of the
memory address specified by the contents of register pair SP (Stack Pointer), and
the high order byte of IX is exchanged with the next highest memory address
(SP+ 1).

Condition Bits Affected: None

Example:

If the Index Register IX contains 3988H, the SP register pair contains 0100H, the
memory location 0100H contains the byte 90H, and memory location 0101 H
contains byte 48H, then the instruction

EX (SP),IX

will result in the IX register pair containing number 4890H, memory location
0100H containing 88H, memory location 0101H containing 39H and the Stack
Pointer containing 0100H.

Before:

Register IX

3988

Stack Pointer

0100

After:

Register IX

4890

Stack Pointer

0100

Address

0100
0101

Address

0100
0101

Stack

90
48

Stack

88
39

EX (SP),IY
Operation: IY H QQ (SP+ 1), IY L Qt; (SP)

Format:

Mnemonic: EX Operands: (SP), IY

EXchange

167

MODEL 111/4 ALDS

Object Code:

I 1 : 1
:

1
: 1 :

1 : 1 : 0 : 1 I FD

I 1 : 1 : 1 :O:o:O: 1 : 1 I E3

Description:

The low order byte in Index Register IY is exchanged with the contents of the
memory address specified by the contents of register pair SP (Stack Pointer), and
the high order byte of IY is exchanged with the next highest memory address
(SP+ 1).

M cycles: 6 T states: 23(4,4,3,4,3,5)

Condition Bits Affected: None

Example:

4 MHz E.T.: 5.75

If the Index Register IY contains 3988H, the SP register pair contains 0100H, the
memory location 0100H contains the byte 90H, and memory location 0101H
contains byte 48H, then the instruction

EX (SP),IY

will result in the IY register pair containing number 4890H, memory location
0100H containing 88H, memory location 0101H containing 39H, and the Stack
Pointer containing 0100H.

Before:

Register IY

3988

Stack Pointer

0100

After:

Register IY

4890

Stack Pointer

0100

168

Address

0100
0101

Address

0100
0101

Stack

90
48

Stack

88
39

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

LOI LoaD & Increment

Operation: (DE)¢ (HL), DE¢ DE+ 1, HL¢ HL + 1, BC¢ BC-1

Format:

Mnemonic: LDI Operands:

Object Code:

l<i'.< O >>:0>I
I I : 0 : I : 0 : 0 : 0 : 0 : 0 I

Description:

ED

A0

A byte of data is transferred from the memory location addressed by the contents
of the HL register pair to the memory location addressed by the contents of the
DE register pair. Then both these register pairs are incremented and the BC (Byte
Counter) register pair is decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Set if BC - 1 =I=- 0; reset otherwise
N: Reset
C: Not affected

Example 1:

If the HL register pair contains 1111H, memory location 1111H contains the byte
88H, the DE register pair contains 2222H, the memory location 2222H contains
byte 66H, and the BC register pair contains 7H, then the instruction

LDI

will result in the following contents in register pairs and memory addresses:

HL 1112H
(1111H) 88H
DE 2223H
(2222H) 88H
BC 6H

169

MODEL 111/4 ALDS

and the condition Bits will be:

S Z H P/V N C

Example 2:

If the contents of registers and memory are as shown:

HL 7C00H
(7C00) FFH
DE 3C00H
(3C00) OOH
BC lH

Then after an LDI instruction the registers and memory will contain the
following:

HL
(7C00)
DE
(3C00)
BC

7C01H
FFH
3C01H
FFH
0H

and the condition bits will be:

S Z H P/V N C

Example 3:

The following program will move 80 consecutive bytes from BUFl to BUF2:

LD HL, BUFl
LD DE, BUF2
LD BC, 80
LOOP LDI
JP NZ, LOOP

LDIR LoaD Increment & Repeat

Operation: (DE)¢ (HL), DE¢ DE+ 1, HL ¢ HL + 1, BC¢ BC-1

Format:

Mnemonic: LDIR Operands:

170

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Object Code:

I : : :o>'.i:O'.il ED

I :O'.i'.i:O:o:0:01 B0

Description:

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the DE register pair. Then both these register pairs are incremented
and the BC (Byte Counter) register pair is decremented. If decrementing causes
the BC to go to zero, the instruction is terminated. If BC is not zero the program
counter (PC) is decremented by 2 and the instruction is repeated. Note that if BC
is set to zero prior to instruction execution, the instruction will loop through 64K
bytes. Also, interrupts will be recognized after each data transfer.

For BC=l=-0:

M cycles: 5

For BC=0:

T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Reset
N: Reset
C: Not affected

Example:

If the HL register pair contains 1111H, the DE register pair contains 2222H, the
BC register pair contains 0003H, and memory locations have these contents:

(11 llH) 88H
(1112H) : 36H
(1113H) : ASH

then after the execution of

LDIR

(2222H)
(2223H)
(2224H)

66H
59H
C5H

171

MODEL 111/4 ALDS

contents of register pairs and memory locations will be:

HL 1114H
DE 2225H
BC 0000H

l IIH) 88H (2222H) 88H
(1112H) 36H (2223H) 36H
(1113H) ASH (2224H) ASH

the H, P/V, and N flags are all zero.

LDD LoaD Decrement

Operation: (DE)¢ (HL), DE¢ DE-1, HL ¢ HL-1, BC¢ BC-1

Format:

Mnemonic: LDD Operands:

Object Code:

1i:i:i:o:i:i:0: 1 I
!1:0:i:o:i:0:0:01
Description:

ED

A8

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the contents of the DE register pair. Then both of these register
pairs, including the BC (Byte Counter) register pair, are decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Set if BC - I =I= 0; reset otherwise
N: Reset
C: Not affected

172

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Example 1:

If the HL register pair contains 1111 H, memory location 1111 H contains the byte
88H, the DE register pair contains 2222H, memory location 2222H contains byte
66H, and the BC register pair contains 7H, then the instruction

LDD

will result in the following contents in register pairs and memory addresses:

HL 1110H
(111 IH) 88H
DE 2221H
(2222H) 88H
BC 6H

and the condition bits will be:

S Z H P/V N C

Example 2:

If the contents of registers and memory are as shown:

HL 7CFFH
(7CFF) 3CH
DE 3CFFH
(3CFF) 00H
BC lH
Then after a LDD instruction the registers and memory will contain the
following:

HL
(7CFF)
DE
(3CFF)
BC

7CFEH
3CH
3CFEH
3CH
0H

and the condition bits will be:

S Z H P/V N C

LDDR LoaD Decrement & Repeat

Operation: (DE)¢ (HL), DE¢ DE -1, HL ¢ HL-1, BC¢ BC 1

Format:

Mnemonic: LDDR Operands:

173

MODEL 111/4 ALDS

Object Code:

1i:i:i:o:i:i:o:i1 ED

I i: 0: i: i: i: 0 : 0: 0 I B8

Description:

This two-byte instruction transfers a byte of data from the memory location
addressed by the contents of the HL register pair to the memory location
addressed by the contents of the DE register pair. Then both of these registers
as well as the BC (Byte Counter) are decremented. If decrementing causes the
BC to go to zero, the instruction is terminated. If BC is not zero, the program
counter (PC) is decremented by 2 and the instruction is repeated. Note that if BC
is set to zero prior to instruction execution, the instruction will loop through 64K
bytes. Also, interrupts will be recognized after each data transfer.

For BC=:/=0:

M cycles: 5

ForBC=0:

T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Reset
N: Reset
C: Not affected

Example:

If the HL register pair contains 1114H, the DE register pair contains 2225H, the
BC register pair contains 0003H, and memory locations have these contents:

(1114H) A5H
(1113H) : 36H
(1112H) : 88H

then after the execution of

LDDR

174

(2225H)
(2224H)
(2223H)

C5H
59H
66H

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

the contents of register pairs and memory locations will be:

HL 1111H
DE 2222H
BC 0000H

(1114H) A5H (2225H) A5H
(1113H) 36H (2224H) 36H
(1112H) 88H (2223H) 88H

and the H, P/V, and N flags are all zero.

CPI ComPare & Increment

Operation: A- (HL), HL ¢ HL + 1, BC¢ BC-1

Format:

Mnemonic: CPI Operands:

Object Code:

l<<<0:<<0: 1 1
l<O:i'.0:0:0: 0 >1
Description:

ED

Al

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the
Z condition bit is set. Then HL is incremented and the Byte Counter (register
pair BC) is decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes 0; set otherwise
N: Set
C: Not affected

175

MODEL 111/4 ALDS

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH, the
Accumulator contains 3BH, and the Byte Counter contains 0001H, then after the
execution of

CPI

the Byte Counter will contain 0000H, the HL register pair will contain 1112H,
the Z flag in the F register will be set, and the P/V flag in the F register will be
reset. There will be no effect on the contents of the Accumulator or address
1111H.

If the contents of memory and registers are as shown

HL
(8A00H)
A
BC

8A00H
6DH
75H
5H

Then during the execution of a CPI instruction the Arithmetic and Logic Unit
will do the following subtraction:

Borrow needed here
0

75H = 0111 0101
- 6DH = 0110 1101 ----

8H = 0000 1000

After CPI is executed registers and memory will contain the following:

HL
(8A00H)
A
BC

8A01H
6DH
75H
4H

and the condition bits would be:

result positive
match not found
borrow from bit 4

Example 3:

lolol1l1l1I
S Z H P/V N C
o o o o o o not affected

always set
BC not zero

The following program is used to verify that the contents of two 80-byte buffers
are identical. Each time a mismatch is found the program calls a subroutine
called ERROR.

176

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

STRT LD HL, BUFl
LD DE,BUF2
LD BC,80

LOOP LD A, (DE)
CPI
CALL NZ,ERROR
INC DE
JR PO,LOOP

END

CPIR ComPare Increment & Repeat

Operation: A- (HL), HL ¢ HL + 1, BC¢ BC-1

Format:

Mnemonic: CPIR Operands:

Object Code:

J1:i;i;o;i;i;o;i1
1i:o:i:i:o:o:o: 1 1
Description:

ED

Bl

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the
Z condition bit is set. The HL is incremented and the Byte Counter (register
pair BC) is decremented. If decrementing causes the BC to go to zero or if
A= (HL), the instruction is terminated. If BC is not zero and A =I= (HL), the
program counter is decremented by 2 and the instruction is repeated. Note that if
BC is set to zero before the execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized after each data
comparison.

For BC =I= 0 and A =I= (HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

For BC =I= 0 or A= (HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

177

MODEL 111/4 ALDS

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes 0; set otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 1111H, the Accumulator (Register A) contains
F3H, the Byte Counter contains 0007H, and memory locations have these
contents:

(1111H) 52H
(1112H) 00H
(1113H) F3H

then after the execution of

CPIR

the contents of register pair HL will be 1114H, and the contents of the Byte
Counter will be 0004H. Since BC =F 0, the P/V flag is still set. This means that it
did not search through the whole block before the instruction stopped. Since a
match was found, the Z flag is set.

The following program uses the CPIR instruction to count the number of nulls
(00H) found in an 80-byte buffer. The count is kept in register E.

STRT LO
LO
LO
LO

LOOP CPIR
JR
INC

FOO JP
END

CPD

BC, 80
HL, BUFF
A,O
E,O

NZ,FOO
E
PE,LOOP

ComPare & Decrement

Operation:A-(HL), HL¢HL-1, BC¢BC-1

Format:

Mnemonic: CPD Operands:

178

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Object Code:

l1:i;i:o:i:i:o:i1 ED

1i:o:i:o:i:o:o:1J A9

Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare, the Z
condition bit is set. The HL and the Byte Counter (register pair BC) are
decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A = (HL); reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes zero; set otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH, the
Accumulator contains 3BH, and the Byte Counter contains 0001H, then after the
execution of

CPD

the Byte Counter will contain 0000H, the HL register pair will contain 1110H,
the Z flag in the F register will be set and the P/V flag in the F register will be
reset. There will be no effect on the contents of the Accumulator or address
1111H.

Since the CPD instruction decrements HL, it is used to search through memory
from high to low addresses. Otherwise it is similar to the CPI instruction.

CPDR ComPare Decrement & Repeat

Operation: A- (HL), HL ¢ HL-1, BC¢ BC-1

Format:

Mnemonic: CPDR Operands:

179

MODEL 111/4 ALDS

Object Code:

I 1 :
1

:
1 : 0 : 1 : 1 :o: 1 I ED

I 1 :o: 1 : 1
:

1 : 0: 0: 1 I B9

Description:

The contents of the memory location addressed by the HL register pair is
compared with the contents of the Accumulator. In case of a true compare,
the Z condition bit is set. The HL and BC (Byte Counter) register pairs are
decremented. If decrementing causes the BC to go to zero or if A= (HL), the
instruction is terminated. If BC is not zero and A -4: (HL), the program counter is
decremented by 2 and the instruction is repeated. Note that if BC is set to zero
prior to instruction execution, the instruction will loop through 64K bytes, if no
match is found. Also, interrupts will be recognized after each data comparison.

For BC -4= 0 and A -4: (HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

For BC = 0 or A = (HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if A= (HL), reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Reset if BC becomes zero; set otherwise
N: Set
C: Not affected

Example:

If the HL register pair contains 1118H, the Accumulator contains F3H, the Byte
Counter contains 0003H, and memory locations have these contents:

(1118H) 52H
(1117H) : 00H
(1116H) : F3H

then after the execution of

CPDR

contents of register pair HL will be 1115H, the contents of the Byte Counter
will be 0000H, the P/V flag in the F register will be reset, and the Z flag in the
F register will be set.

180

8 BIT ARITHMETIC AND LOGICAL GROUP

8 Bit Arithmetic and Logical Group

ADDA,r
Operation: A¢ A+ r

Format:

Mnemonic: ADD Operands: A, r

Object Code:

I 1 : 0 : 0 : 0 : 0 : r : r : r I

Description:

The contents of register r are added to the contents of the Accumulator, and the
result is stored in the Accumulator. The symbol r identifies the registers A, B, C,
D, E, H or L assembled as follows in the object code:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 44H, and the contents of register C are
llH, after the execution of

ADD A,C

181

MODEL 111/4 ALDS

the contents of the Accumulator will be 55H. See Appendix K for more details of
condition bits affected.

ADDA,n
Operation: A¢ A+ n

Format:

Mnemonic: ADD Operands: A, n

Object Code:

C6

Description:

The integer n is added to the contents of the Accumulator and the results are
stored in the Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 23H, after the execution of

ADD A,33H

the contents of the Accumulator will be 56H.

182

8 BIT ARITHMETIC AND LOGICAL GROUP

ADD A,(HL)
Operation: A¢ A+ (HL)

Format:

Mnemonic: ADD Operands: A, (HL)

Object Code:

86

Description:

The byte at the memory address specified by the contents of the HL register
pair is added to the contents of the Accumulator and the result is stored in the
Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are A0H, and the content of the register
pair HL is 2323H, and memory location 2323H contains byte 08H, after the
execution of

ADD A,(HL)

the Accumulator will contain A8H.

ADD A,(IX + d)
Operation: A¢ A+ (IX+ d)

Format:

Mnemonic: ADD Operands: A, (IX+ d)

183

MODEL 111/4 ALDS

Object Code:

I< '.o'.i'.i'.i'.o'.il
/1;o;o;o:a:i:i:a1
1d:d:d:d:d:d:d:d1

Description:

DD

86

The contents of the Index Register (register pair IX) is added to a two's
complement displacement d to point to an address in memory. The contents of
this address is then added to the contents of the Accumulator and the result is
stored in the Accumulator.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are 11 H, the Index Register IX contains 1000H, and
if the content of memory location 1005H is 22H, after the execution of

ADD A,(IX + 5H)

the contents of the Accumulator will be 33H.

ADD A,(IY +d)
Operation: A¢ A + (IV+ d)

Format:

Mnemonic: ADD Operands: A, (IY + d)

184

8 BIT ARITHMETIC AND LOGICAL GROUP

Object Code:

I : : : : : :a: I

I :0:0'.o:O>: :01
Id :d:d:d:d:d:d:dl

Description:

FD

86

The contents of the Index Register (register pair IY) is added to the displacement
d to point to an address in memory. The contents of this address is then added to
the contents of the Accumulator and the result is stored in the Accumulator.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are IIH, the Index Register pair IY contains 1000H,
and if the content of memory location 1005H is 22H, after the execution of

ADD A,(IY + 5H)

the contents of the Accumulator will be 33H.

ADC A,s ADd with Carry

Operation: A ¢ A S + CY

Format:

Mnemonic: ADC Operands: A, s

The s operand is any of r, n, (HL), (IX+ d) or (IY + d) as defined for the
analogous ADD instruction. These various possible opcode-operand
combinations are assembled as follows in the object code:

185

MODEL 111/4 ALDS

Object Code:

ADC A, r I i: 0: 0: 0: > > > I
ADC A, n I i'. r: 0: 0: I : i: i'. 0 I

ln'.n'.n'.n'.n'.n'.n'. 0 1
ADC A, (HL) I 1 : 0 : 0 : 0 : I : I : I : 0 I

ADC A, (IX+ d) I 1 : I :0 > : I : I : o; I I

I i;o:O:O: i'. i'. i'.oJ
1d:d:d:d:d:d:d:d1

ADC A, (IY + d) I 1 : 1 : 1 : I : 1 : I : 0 : 1 I

!1:0:0:0>>>:0I
1d:d:d:d:d:d:d:d1

CE

8E

DD

8E

FD

8E

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object
code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L 101

Description:

The s operand, along with the Carry Flag ("C" in the F register) is added to the
contents of the Accumulator, and the result is stored in the Accumulator.

186

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4MHz
Instruction Cycles T States E.T. in µs

ADC A, r 1 4 1.00
ADC A, n 2 7(4,3) 1.75
ADC A, (HL) 2 7(4,3) 1.75
ADC A, (IX+ d) 5 19(4,4,3,5,3) 4.75
ADC A, (IY + d) 5 19(4,4,3,5 ,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 7; reset otherwise

Example 1:

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair
contains 6666H, and address 6666H contains 10H, after the execution of

ADC A, (HL)

the Accumulator will contain 27H.

Example 2:

If the Carry Flag is set, the Accumulator contains 30H, and register C contains
05H, then after the execution of

ADC A, C

the Accumulator will contain 36H.

SUBs SUBtract

Operation: A¢ A - S

Format:

Mnemonic: SUB Operands: s

The s operand is any of r, n, (HL), (IX+ d) or (IY + d) as defined for the
analogous ADD instruction. These various possible opcode-operand
combinations are assembled as follows in the object code:

187

MODEL 111/4 ALDS

Object Code:

SUBr

SUB n

SUB (HL)

SUB (IX+d)

SUB (IY +ct)

I I O : 0 : 0 : r : r r I

I :i:o:i:o:: :01
1°>>>>>>>1
11:0:0: :o:i;i:ol
11 <<< :O>I
l1 0:0: >>>>I
l<<<<<<<dl
1

1 >>>>>:0: I

l<0: 0
: :O>>:OJ

l<<<<<<<dl

D6

96

DD

96

FD

96

r identifies registers A, B, C, D, E, Hor L assembled as follows in the object
code field above:

Register r

A 111
B = 000
C 001
D = 010
E 011
H = 100
L = 101

Description:

The s operand is subtracted from the contents of the Accumulator, and the result
is stored in the Accumulator.

188

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4MHz
Instruction Cycles T States E.T. in µs

SUBr 1 4 1.00
SUBn 2 7(4,3) 1.75
SUB (HL) 2 7(4,3) 1.75
SUB (IX +d) 5 19(4,4,3 ,5 ,3) 4.75
SUB (IY +d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example:

If the Accumulator contains 29H and register D contains llH, after the execution
of

SUB D

the Accumulator will contain 18H.

SBCA,s SuBtract with borrow (Carry)

Operation: A¢ A - S - CY

Format:

Mnemonic: SBC Operands: A, s

The s operand is any of r, n, (HL), (IX+ d) or (IY + d) as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:

SBC A, r I 1 :o:o: 1
:

1 >>>I
SBC A, n I 1 : 1 :o: 1 : 1 : 1 : 1 :01 DE

ln:n:n:n:n:n:n:nl

189

MODEL 111/4 ALDS

SBC A, (HL) I 1 :o:o: 1
:

1 : 1
:

1 :01 9E

SBC A, (IX+ d) I 1 : 1 ;o: 1 : 1
: 1 ;o: 1 I DD

I 1 : 0: 0: 1 : 1 : 1 :
1 :01 9E

1d:d:d:d:d:d:d:d1

SBC A,(IY + d) I 1
:

1
:

1 : 1
:

1
:

1 :o: 1 I FD

I 1 : 0: 0: 1
:

1
:

1
:

1 :01 9E

I<<< d d : <<al
r identifies registers A, B, C, D, E, H, or L assembled as follows in the object
code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The s operand, along with the Carry Flag ("C" in the F register) is subtracted
from the contents of the Accumulator, and the result is stored in the
Accumulator.

190

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4MHz
Instruction Cycles T States E.T. in µs

SBC A, r l 4 1.00
SBC A, n 2 7(4,3) 1.75
SBC A, (HL) 2 7(4,3) 1.75
SBC A, (IX+ d) 5 19(4,4,3,5,3) 4.75
SBC A, (IY + d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example 1:

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair
contains 3433H, and address 3433H contains 05H, after the execution of

SBC A,(HL)

the Accumulator will contain 10H.

Example 2:

If the Carry Flag is set, the Accumulator contains 21H and register B contains 0,
then after the execution of

SBC A,B

the Accumulator contains 20H.

ANDs
Operation: A¢ Ao S

Format:

Mnemonic: AND Operands: s

The s operand is any of r, n, (HL), (IX+ d) or (IY + d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

191

MODEL 111/4 ALDS

Object Code:

ANDr

ANDn

AND (HL)

AND (IX+d)

AND (IY +d)

I
1 0 0 0 r r r I

I 1 : 1 : ;o;o: : '.al

1°'.n>>>>>>I
I 1 :a: 1 ;o;o: 1

:
1 '.ol

11 >:0>>>:0'.il
l1'.o'.i:O:o;i;i;o1
1d:d:d:d:d:d:d:d1

11 >'.i'.i'.i'.i:O'.il
1i:o;i;o;o;i:i: 0 1
1d:d:d:d:d:d:d:d1

E6

A6

DD

A6

FD

A6

r identifies register A, B, C, D, E, Hor L assembled as follows in the object code
field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

192

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical AND operation, Bit by Bit, is performed between the byte specified by
the s operand and the byte contained in the Accumulator; the result is stored in
the Accumulator.

M 4MHz
Instruction Cycles TStates E.T. in µs

ANDr 1 4 1.00
ANDn 2 7(4,3) 1.75
AND (HL) 2 7(4,3) 1.75
AND (IX+d) 5 19(4,4,3 ,5 ,3) 4.75
AND (IY +d) 5 19(4,4,3 ,5 ,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset

Table of AND Values:

IF Then
A B A (After)

0 0 0
0 1 0
1 0 0
1 1 1

Example:

If the B register contains 7BH (01111011) and the Accumulator contains C3H
(11000011), after the execution of

AND B

the Accumulator will contain 43H (01000011).

ORs
Operation: A ¢ A o S

Format:

Mnemonic: OR Operands: s

193

MODEL 111/4 ALDS

The s operand is any of r, n, (HL), (IX+ d), or (IY + d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:

ORr

ORn

OR (HL)

OR (IX+d)

OR (IY +d)

li'.0: 1 >:0>>>I
11:i:i:i:o:: :01
1°:U>>>>>>I
l<O:<<O:< :0 1
l<<O:<< :o: I
11:0:i:i:o:i:i:01
l<<<<<<<dl
\1;i;i:i:i:i:o:i1
1i:o:i:i:o: : :01
1d:d:d:d:d:d:d:d1

F6

B6

DD

B6

FD

B6

r identifies register A, B, C, D, E, Hor L assembled as follows in the object code
field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

194

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical OR operation, Bit by Bit, is performed between the byte specified by
the s operand and the byte contained in the Accumulator; the result is stored in
the Accumulator.

M 4MHz
Instruction Cycles T States E.T. in µs

ORr 1 4 1.00
ORn 2 7(4,3) 1.75
OR (HL) 2 7(4,3) 1.75
OR (IX+d) 5 19(4,4,3,5,3) 4.75
OR (IY +d) 5 19(4,4,3 ,5 ,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset

Table of OR Values:

IF Then
A B A (After)

0 0 0
0 1 1
1 0 1
1 1 1

Example:

If the H register contains 48H (01001000) and the Accumulator contains
12H (00010010), after the execution of

OR H

the Accumulator will contain 5AH (01011010).

XORs eXclusive OR

Operation: A¢ AEBs

Format:

Mnemonic: XOR Operands: s

195

MODEL 111/4 ALDS

The s operand is any of r, n, (HL), (IX+ d) or (IY + d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:

XORr

XORn

XOR (HL)

XOR (IX+d)

XOR (IY +d)

l<0:< 0 >'.r>>J
Ji'.i'.<O:i'.<i'. 0 1

ln:n:n:n:n:n:n:nl

j1:0:i;o;i;i;i;oj

1i:i:o:i:i:i:o: 1 1
I i;o: i;o; i'. i; i;oj

l<<<<<<<dl
1i;i;i;i;i; >>I
1i;o;i;o;i;: :01
1d:d:d:d:d:d:d:d1

EE

AE

DD

AE

FD

AE

r identifies registers A, B, C, D, E, Hor L assembled as follows in the object
code field above:

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H 100
L = 101

196

8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical exclusive-OR operation, bit by bit, is performed between the byte
specified by the s operand and the byte contained in the Accumulator; the result
is stored in the Accumulator.

M 4MHz
Instruction Cycles T States E.T. in µs

XORr 1 4 1.00
XORn 2 7(4,3) 1.75
XOR (HL) 2 7(4,3) 1.75
XOR (IX+d) 5 19(4,4,3,5,3) 4.75
XOR (IY +d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Reset

Table of XOR Values:

IF Then
A B A (After)

0 0 0
0 1 1
1 0 1
1 1 0

Note: in Table above that any two like numbers will result in zero.

Example 1:

If the Accumulator contains 96H (10010110), after the execution of

XOR 5DH (Note: 5DH = 01011101)

the Accumulator will contain CBH (11001011).

Example 2:

The instruction

XOR A

will zero the Accumulator.

197

MODEL 111/4 ALDS

CPs
Operation: A - S

Format:

Mnemonic: CP Operands: s

ComPare

The s operand is any of r, n, (HL), (IX+ d) or (IY + d), as defined for the
analogous ADD instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

Object Code:

CPr

CPn

CP (HL)

CP (IX+d)

CP (IY +d)

11 :0>>>>>>I
11 >>>>>>:0I
ln:n:n:n:n:n:n:nl

]1:0:i:i:i:i:i:01
1i;i;o:i;i;i;o;1]
1i;o;i;i;i;i;i;o]
1d:d:d:d:d:d:d:d1

1i:i:i;i;i;i;o;1]
11:0:i:i;i;i;i:o]
1d:d:d:d:d:d:d:d1

FE

BE

DD

BE

FD

BE

r identifies register A, B, C, D, E, H or L assembled as follows in the object code
field above:

198

8 BIT ARITHMETIC AND LOGICAL GROUP

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

Description:

The contents of the s operand are compared with the contents of the
Accumulator. If there is a true compare, a flag is set.

M 4MHz
Instruction Cycles TStates E.T. in µs

CPr 1 4 1.00
CPn 2 7(4,3) 1.75
CP (HL) 2 7(4,3) 1.75
CP (IX +d) 5 19(4,4,3,5,3) 4.75
CP (IY +d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow in Bit 7; reset otherwise

Example 1:

If the Accumulator contains 63H, the HL register pair contains 6000H and
memory location 6000H contains 60H, the instruction

CP (HL)

will result in all the flags being reset except N.

Example: 2

If the Accumulator contains 65H and register C also contains 65H, then after the
execution of

CP C

the Z flag will be set.

See Appendix E for more details of condition codes affected.

199

MODEL 111/4 ALDS

INC r INCrement

Operation: r ¢ r 1

Format:

Mnemonic: INC Operands: r

Object Code:

Description:

Register r is incremented. r identifies any of the registers A, B, C, D, E, Hor L,
assembled as follows in the object code.

Register r

A = 111
B = 000
C = 001
D = 010
E = 011
H = 100
L = 101

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if r was 7FH before operation; reset otherwise
N: Reset
C: Not affected

Example:

If the contents of register Dare 28H, after the execution of

INC D

the contents of register D will be 29H.

200

8 BIT ARITHMETIC AND LOGICAL GROUP

INC (HL) INCrement

Operation: (HL) ¢ (HL) 1

Format:

Mnemonic: INC Operands: (HL)

Object Code:

34

Description:

The byte contained in the address specified by the contents of the HL register
pair is incremented.

M cycles: 3 T states: 11(4,4,3) 4 MHz E.T.: 2.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if (HL) was 7FH before operation; reset otherwise
N: Reset
C: Not Affected

Example:

If the contents of the HL register pair are 3434H, and the contents of address
3434H are 82H, after the execution of

INC (HL)

memory location 3434H will contain 83H.

INC (IX+ d) INCrement

Operation: (IX+ d) ¢(IX+ d) 1

Format:

Mnemonic: INC Operands: (IX + d)

201

MODEL 111/4 ALDS

Object Code:

J1:i;o;i;i;i;o;1J
Jo:O: i; i;o; i;o;oJ
1d:d:d:d:d:d:d:d1

Description:

DD

34

The contents of the Index Register IX (register pair IX) are added to a two's
complement displacement integer d to point to an address in memory. The
contents of this address are then incremented.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if (IX+ d) was 7FH before operation; reset otherwise
N: Reset
C: Not affected

Example:

If the contents of the Index Register pair IX are 2020H, and the memory location
2030H contains byte 34H, after the execution of

INC (IX+ 10H)

the contents of memory location 2030H will be 35H.

INC (IV +d) INCrement

Operation: (IY + d) ¢ (IY + d) + 1

Format:

Mnemonic: INC Operands: (IY + d)

202

8 BIT ARITHMETIC AND LOGICAL GROUP

Object Code:

I 1
:

1 : 1
:

1
: 1

:
1 : 0: 1 I FD

Io: o: 1 1 :o: 1 : 0 :0 I 34

I d d :<<<<<di
Description:

The contents of the Index Register IY (register pair IY) are added to a two's
complement displacement integer d to point to an address in memory. The
contents of this address are then incremented.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry from Bit 3; reset otherwise
P/V: Set if (IY + d) was 7FH before operation; reset otherwise
N: Reset
C: Not Affected

Example:

If the contents of the Index Register pair IY are 2020H, and the memory location
2030H contain byte 34H, after the execution of

INC (IY + 10H)

the contents of memory location 2030H will be 35H.

DECm DECrement

Operation: m ¢ m - 1

Format:

Mnemonic: DEC Operands: m

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous INC instructions. These various possible opcode-operand
combinations are assembled as follows in the object code:

203

MODEL 111/4 ALDS

Object Code:

DECr I O : 0 : r : r : r : I :o: I I

DEC (HL) IO :0: I : I :o: I :o: I I 35

DEC (IX +d) I I : 1 :o: I : I :
I : 0 : I I DD

10:0: 1 : I :o: I :o: I I 35

1d:d:d:d:d:d:d:d1

DEC (IY +d)
I I

:
I : I : I : I : I : 0: I I FD

IO :0: 1 : 1 :o: 1 :o: 1 I 35

1d:d:d:d:d:d:d:d1

r identifies register A, B, C, D, E, Hor L assembled as follows in the object code
field above:

Register r

A = 111
B 000
C 001
D = 010
E 011
H = 100
L = 101

Description:

The byte specified by them operand is decremented.

204

8 BIT ARITHMETIC AND LOGICAL GROUP

M 4MHz
Instruction Cycles T States E.T. in µ,s

DECr I 4 1.00
DEC (HL) 3 11(4,4,3) 2.75
DEC (IX+d) 6 23(4,4,3 ,5 ,4,3) 5.75
DEC (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if m was 80H before operation; reset otherwise
N: Set
C: Not affected

Example:

If the D register contains byte 2AH, after the execution of

DEC D
register D will contain 29H.

205

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

General Purpose Arithmetic and
CPU Control Groups

DAA
Operation: Decimal-Adjust Accumulator

Format:

Mnemonic: DAA Operands:

Object Code:

27

Description:
This instruction modifies the results of addition or subtraction so that the results
of binary arithmetic are correct for decimal numbers. The Binary Coded Decimal
(BCD) code uses the 8-bit accumulator as follows: the eight bits are broken up
into two groups of four bits, which represent a two-digit decimal number from 00
to 99. If numbers like this are added with the binary adder in the Z-80, answers
larger than 10 may result in each decimal place. The DAA instruction will
''adjust'' the answer so that each decimal place has a value of 9 or less, and so
that the digits have the correct decimal value, though they were added by a binary
circuit. The carry and half-carry flags are used in this conversion, as is a circuit
that detects digits that are 10 or bigger.

Operation

ADD
ADC
INC

SUB
SBC
DEC
NEG

M cycles: 1

C
Before
DAA

0
0
0
0
0
0
1
1
1

0
0
1
1

HEX
Value in
Upper
Digit

(bits 7-4)
0-9
0-8
0-9
A-F
9-F
A-F
0-2
0-2
0-3

0-9
0-8
7-F
6-F

H
Before
DAA

0
0
1
0
0
1
0
0
1

0
1
0
1

T states: 4 4 MHz E.T.: 1.00

HEX
Value in
Lower
Digit

(bits 3-0)
0-9
A-F
0-3
0-9
A-F
0-3
0-9
A-F
0-3

0-9
6-F
0-9
6-F

Number
Added

to
Byte
00
06
06
60
66
66
60
66
66

00
FA
A0
9A

C
After
DAA

0
0
0
1
1
1
1
1
1

0
0
1
1

207

MODEL 111/4 ALDS

Condition Bits Affected:

S: Set if most significant bit of Acc. is l after operation; reset otherwise
Z: Set if Acc. is zero after operation; reset otherwise
H: See instruction
P/V: Set if Acc. is even parity after operation; reset otherwise
N: Not affected
C: See instruction

Example:

If an addition operation is performed between 15 (BCD) and 27 (BCD), simple
decimal arithmetic gives this result:

15
+27

42

But when the binary representations are added in the Accumulator according to
standard binary arithmetic,

0001 0101
+0010 0111

0011 1100 3C

the sum is not decimal. The DAA instruction adjusts this result so that the correct
BCD representation is obtained:

0011 1100
+0000 0110(adding 06 from table)

0100 0010 = 42

CPL ComPLement

Operation: A¢ A

Format:

Mnemonic: CPL Operands:

Object Code:

2F

208

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

Contents of the Accumulator (register are inverted (one's complement).

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set
P/V: Not affected
N: Set
C: Not affected

Example:

If the contents of the Accumulator are 1011 0100, after the execution of

CPL

the Accumulator contents will be 0100 1011.

NEG NEGate

Operation: A¢ 0 - A

Format:

Mnemonic: NEG Operands:

Object Code:

11:i:i:o:i:i:o:11 ED

lo>:O:O:O>:O:oJ 44

Description:

Contents of the Accumulator are negated (two's complement). This is the same as
subtracting the contents of the Accumulator from zero. Note that 80H is left
unchanged.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

209

MODEL 111/4 ALDS

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 4; reset otherwise
P/V: Set if Acc. was 80H before operation; reset otherwise
N: Set
C: Set if Acc. was not 00H before operation; reset otherwise

Example:

If the contents of the Accumulator are

1 1 1 o I o 1 1 1 1 1 o o I o 1

after the execution of

NEG

the Accumulator contents will be

10111110 1 0 0 0

CCF
Operation: CY¢ CY

Format:

Mnemonic: CCF Operands:

Object Code:

I O : 0 : I : I : I : I : I : I I

Description:

The C flag in the F register is inverted.

3F

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Previous carry will be copied
P/V: Not affected
N: Reset

Complement Carry Flag

C: Set if CY was 0 before operation; reset otherwise

210

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

SCF Set Carry Flag

Operation: CY¢ 1

Format:

Mnemonic: SCF Operands:

Object Code:

Description:

The C flag in the F register is set.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Set

NOP No OPeration

Operation:

Format:

Mnemonic: NOP Operands:

Object Code:

00

211

MODEL 111/4 ALDS

Description:

CPU performs no operation during this machine cycle.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

HALT
Operation:

Format:

Mnemonic: HALT Operands:

Object Code:

Description:

The HALT instruction suspends CPU operation until a subsequent interrupt or
reset is received. While in the halt state, the processor will execute NOP's to
maintain memory refresh logic.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

DI Disable Interrupts

Operation: I FF¢ 0

Format:

Mnemonic: DI Operands:

Object Code:

212

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

DI disables the maskable interrupt by resetting the interrupt enable flip-flops
(IFFl and IFF2). Note that this instruction disables the maskable interrupt during
its execution.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example:

When the CPU executes the instruction

DI

the maskable interrupt is disabled until it is subsequently re-enabled by an EI
instruction. The CPU will not respond to an Interrupt Request (INT) signal.

El Enable Interrupts

Operation: IFF ¢ 1

Format:

Mnemonic: EI Operands:

Object Code:

FB

Description:

EI enables the maskable interrupt by setting the interrupt enable flip-flops (IFFl
and IFF2). Note that this instruction disables the maskable interrupt during its
execution.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example:

When the CPU executes instruction

EI

the maskable interrupt is enabled. The CPU will now respond to an Interrupt
Request (INT) signal.

213

MODEL 111/4 ALDS

IM 0
Operation:

Format:

Mnemonic: IM Operands: 0

Object Code:

11:i:i:o:i:i:o:11
lo:i:O:O:O:<<ol
Description:

Interrupt Mode 0

ED

46

The IM 0 instruction sets interrupt mode 0. In this mode the interrupting device
can insert any instruction on the data bus and allow the CPU to execute it. The
first byte of a multi-byte instruction is read during interrupt acknowledge cycle.
Subsequent bytes are read in by a normal memory read sequence.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

IM 1 Interrupt Mode 1

Operation:

Format:

Mnemonic: IM Operands: 1

Object Code:

l1:i;i:o;i;i;o;i1 ED

10:i:o:i:o:i:i:01 56

214

GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

The IM instruction sets interrupt mode 1. In this mode the processor will respond
to an interrupt by executing a restart to location 0038H.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

IM 2
Operation:

Format:

Mnemonic: IM Operands: 2

Object Code:

1i:i:i:o:i:i:0: 1 I
10:i:o:i:i:i:i: 0 1
Description:

ED

5E

Interrupt Mode 2

The IM 2 instruction sets interrupt mode 2. This mode allows an indirect call to
any location in memory. With this mode the CPU forms a 16-bit memory
address. The upper eight bits are the contents of the Interrupt Vector Register I
and the lower eight bits are supplied by the interrupting device.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

215

16 BIT ARITHMETIC GROUP

16 Bit Arithmetic Group

ADD HL,ss
Operation: HL¢HL+ss

Format:

Mnemonic: ADD Operands: HL, ss

Object Code:

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
added to the contents of register pair HL, and the result is stored in HL. Operand
ss is specified as follows in the assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M cycles: 3 T states: 11(4,4,3) 4 MHz E.T.: 2.75

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If register pair HL contains the integer 4242H and register pair DE contains
1111H, after the execution of

ADD HL, DE

the HL register pair will contain 5353H.

217

MODEL 111/4 ALDS

ADC HL,ss
Operation: HL ¢ HL + ss + CY

Format:

Mnemonic: ADC Operands: HL, ss

Object Code:

1i:i:i;o;i;i;o;11 ED

10:i'.S:S:i'.O:i'.oj
Description:

ADd with Carry

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
added with the Carry Flag (C flag in the F register) to the contents of register pair
HL, and the result is stored in HL. Operand ss is specified as follows in the
assembled object code.

Register
Pair
BC 00
DE 01
HL 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4MHzE.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if carry out of Bit 11; reset otherwise
P/V: Set if overflow; reset otherwise
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If the register pair BC contains 2222H, register pair HL contains 5437H and the
Carry Flag is set, after the execution of

ADC HL, BC

the contents of HL will be 765AH.

218

16 BIT ARITHMETIC GROUP

SBC HL,ss
Operation: HL ¢ HL - ss - CY

Format:

Mnemonic: SBC Operands: HL, ss

Object Code:

I :i:i:o:i:i:o:i1 ED

[o>'.s'.s:O:O:i:o[
Description:

SuBtract with Carry

The contents of the register pair ss (any of register pairs BC, DE, HL or SP)
and the Carry Flag (C flag in the F register) are subtracted from the contents of
register pair HL and the result is stored in HL. Operand ss is specified as follows
in the assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Set if borrow from Bit 12; reset otherwise
P/V: Set if overflow; reset otherwise
N: Set
C: Set if borrow; reset otherwise

Example:

If the contents of the HL register pair are 9999H, the contents of register pair DE
are 1111H, and the Carry Flag is set, after the execution of

SBC HL, DE

the contents of HL will be 8887H.

219

MODEL 111/4 ALDS

ADD IX,pp
Operation: IX¢ IX pp

Format:

Mnemonic: ADD Operands: IX,pp

Object Code:

l<<0:<<<0: 1 1
I O : 0 : p : p : I : 0 : 0 : I I

Description:

DD

The contents of register pair pp (any of register pairs BC, DE, IX or SP) are
added to the contents of the Index Register IX, and the results are stored in IX.
Operand pp is specified as follows in the assembled object code.

Register
Pair pp

BC 00
DE 01
IX 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If the contents of Index Register IX are 3333H and the contents of register pair
BC are 5555H, after the execution of

ADD IX, BC

the contents of IX will be 8888H.

220

16 BIT ARITHMETIC GROUP

ADD IY,rr
Operation: IV¢ IV+ rr

Format:

Mnemonic: ADD Operands: IY, IT

Object Code:

/1;i;i;i;i;i;o;i1

10:0:r'.r'.i'.0: 0 >1
Description:

FD

The contents of register pair IT (any of register pairs BC, DE, IY or SP) are
added to the contents of Index Register IY, and the result is stored in IY. Operand
rr is specified as follows in the assembled object code.

Register
Pair rr

BC 00
DE 01
IY 10
SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Set if carry out of Bit 11; reset otherwise
P/V: Not affected
N: Reset
C: Set if carry from Bit 15; reset otherwise

Example:

If the contents of Index Register IY are 333H and the contents of register pair BC
are 555H, after the execution of

ADD IY, BC

the contents of IY will be 888H.

221

MODEL 111/4 ALDS

INC ss INCrement

Operation: SS ¢ SS + 1

Format:

Mnemonic: INC Operands: ss

Object Code:

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are
incremented. Operand ss is specified as follows in the assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M cycles: 1 T states: 6 4 MHz E.T.: 1.50

Condition Bits Affected: None

Example:

If the register pair contains 1000H, after the execution of

INC HL

HL will contain 1001 H.

INC IX
Operation: IX¢ IX+ 1

Format:

Mnemonic: INC Operands: IX

222

INCrement

16 BIT ARITHMETIC GROUP

Object Code:

I 1 : 1 :o: 1 : 1
:

1 : 0: 1 I DD

Io : o : 1 : 0: 0: 0: 1
: 1 I 23

Description:

The contents of the Index Register IX are incremented.

M cycles: 2 T states: 10(4,6)

Condition Bits Affected: None

Example:

4 MHz E.T.: 2.50

If the Index Register IX contains the integer 3300H after the execution of

INC IX

the contents of Index Register IX will be 3301H.

INC IV INCrement

Operation: IV¢ IV + 1

Format:

Mnemonic: INC Operands: IY

Object Code:

1i;i;i;i;i;i;o;11 FD

Io: o: 1 : o: o: o: 1 : 1 I 23

Description:

The contents of the Index Register IY are incremented.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

223

MODEL 111/4 ALDS

Example:

If the contents of the Index Register are 2977H, after the execution of

INC IY

the contents of Index Register IY will be 2978H.

DECss DECrement

Operation: SS ¢ SS - 1

Format:

Mnemonic: DEC Operands: ss

Object Code:

Description:

The contents of register pair ss (any of the register pairs BC, DE, HL or SP) are
decremented. Operand ss is specified as follows in the assembled object code.

Register
Pair ss

BC 00
DE 01
HL 10
SP 11

M cycles: 1 T states: 6 4 MHz E.T.: 1.50

Condition Bits Affected: None

Example:

If register pair HL contains 1001H, after the execution of

DEC HL

the contents of HL will be 1000H.

224

16 BIT ARITHMETIC GROUP

DECIX
Operation: IX¢ IX - 1

Format:

Mnemonic: DEC Operands: IX

Object Code:

I < ;a : :i ;i ;a ;i I DD

10:0: ;o;i;a:i;i1 2B

Description:

The contents of Index Register IX are decremented.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

DECrement

If the contents of Index Register IX are 2006H, after the execution of

DEC IX

the contents of Index Register IX will be 2005H.

DECIY
Operation: IV¢ IV - 1

Format:

Mnemonic: DEC Operands: IY

Object Code:

l1 :i:i;i;i;i;a:i1
!o;o;i;a;i;a;i;i1

FD

2B

DECrement

225

MODEL 111/4 ALDS

Description:

The contents of the Index Register IY are decremented.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IY are 7649H, after the execution of

DEC IY

the contents of Index Register IY will be 7648H.

226

ROTATE AND SHIFT GROUP

Rotate and Shift Group

RLCA
Operation: I CY I JI 7 ¢-0 I J

A
Format:

Mnemonic: RLCA Operands:

Object Code:

Rotate Left Circular Accumulator

IO: 0: 0: 0: 0: I : I : I I 07

Description:
The contents of the Accumulator (register A) are rotated left: the content of bit 0
is moved to bit 1; the previous content of bit 1 is moved to bit 2; this pattern is
continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and also into bit 0. (Bit 0 is the least significant bit.)

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:
S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 7 of Acc.

Example:

If the contents of the Accumulator are

7 6 5 4 3 2 1 0

1 1 1 o o o 1 o o o
after the execution of

RLCA

the contents of the Carry Flag and the Accumulator will be

C 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 1

227

MODEL 111/4 ALDS

RLA
Operation:

Format:

Mnemonic: RLA

Object Code:

Description:

~ 1¢-0 l
A

Operands:

Rotate Left Accumulator

17

The contents of the Accumulator (register A) are rotated left: the content of bit 0
is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern
is continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and the previous content of the Carry Flag is copied
into bit 0. Bit 0 is the least significant bit.

M cycles: 1 T states: 4 4 MHz E.T.: 1. 00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 7 of Acc.

Example:

If the contents of the Carry Flag and the Accumulator are

C 7 6 5 4 3 2 1 0

0 I 1 I 1 1 I O I 1 I 1 I O I
after the execution of

RLA

the contents of the Carry Flag and the Accumulator will be

C 7 6 5 4 3 2 1 0

ITJ I 1 1 1 0 1 1 0 1

228

ROTATE AND SHIFT GROUP

RRCA Rotate Right Circular Accumulator

Operation:~ I 7 ::Q O ~
A

Format:

Mnemonic: RRCA Operands:

Object Code:

Description:

0F

The contents of the Accumulator (register A) are rotated right: the content of
bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the register. The content of bit 0 is copied into
bit 7 and also into the Carry Flag (C flag in register F.) Bit 0 is the least
significant bit.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 0 of Acc.

Example:

If the contents of the Accumulator are

7 6 5 4 3 2 1 0

1 o I o I o 1 1 1 o I o I o 1 1

After the execution of

RRCA

the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 C

I 11°101°111010101[JJ

229

MODEL 111/4 ALDS

ARA
Operation:~ j 7-Q O I-¢ ~

A
Format:

Mnemonic: RRA Operands:

Object Code:

I O : 0 : 0 : I : I : I : I : I I

Description:

Rotate Right Accumulator

IF

The contents of the Accumulator (register A) are rotated right: the content of
bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the register. The content of bit 0 is copied into
the Carry Flag (C flag in register F) and the previous content of the Carry Flag
is copied into bit 7. Bit 0 is the least significant bit.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected:

S: Not affected
Z: Not affected
H: Reset
P/V: Not affected
N: Reset
C: Data from Bit 0 of Acc.

Example:

If the contents of the Accumulator and the Carry Flag are

7 6 5 4 3 2 1 0 C

1111111°1°101°1 1 IITJ
after the execution of

RRA
the contents of the Accumulator and the Carry Flag will be

7 6 5 4 3 2 1 0 C

1011 1 1 0 0 0 01[0

230

ROTATE AND SHIFT GROUP

RLCr
Operation: I CY I ~ 7 •O I ;_J

r
Format:

Mnemonic: RLC Operands: r

Object Code:

1i:i:o:o:i:o;i:,1
I O : 0 : 0 : 0 : 0 : r : r : r I

Description:

Rotate Left Circular

CB

The eight-bit contents of register rare rotated left: the content of bit 0 is copied
into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is
continued throughout the register. The content of bit 7 is copied into the Carry
Flag (C flag in register F) and also into bit 0. Operand r is specified as follows in
the assembled object code:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

Note: Bit 0 is the least significant bit.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

231

MODEL 111/4 ALDS

Example:

If the contents of register r are

7 6 5 4 3 2 1 0

1 1 o I o o 1 o o o

after the execution of

RLC r

the contents of the Carry Flag and register r will be

C 7 6 5 4 3 2 1 0

0 0 0 1 0 0 0 1

RLC (HL)
Operation: I CY I,.,~

~y-

Format:

Mnemonic: RLC Operands: (HL)

Object Code:

11 >:0:0>:0>>I
10: 0 :0:0:0>>:0I
Description:

Rotate Left Circular

CB

06

The contents of the memory address specified by the contents of register pair
HL are rotated left: the content of bit 0 is copied into bit 1; the previous content
of bit 1 is copied into bit 2; this pattern is continued throughout the byte. The
content of bit 7 is copied into the Carry Flag (C flag in register F) and also into
bit 0. Bit 0 is the least significant bit.

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

232

ROTATE AND SHIFT GROUP

Condition Bits Affected:

S: Set if IS noo,oTn,a. reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

Example:

If the contents of the HL register pair are 2828H, and the contents of memory
location 2828H are

7 6 5 4 3

1 o o I o 1 1

after the execution of

RLC (HL)

2 1 0

0 0 0

the contents of the Carry Flag and memory locations 2828H will be

C 7 6 5 4 3 2 1 0

0 0 0 1101010 1

RLC (IX+d)
Operation: I CY I ~ 7 ¢-0 I ;J

(IX+d)
Format:

Mnemonic: RLC Operands: (IX+ d)

Object Code:

I i: i: < < < i: < I I DD

11:i;o:o:i:o;i:11 CB

ld:d:d:d:d:d:d:di

lo'.0:0:o'.O:<<ol 06

Rotate Left Circular

233

MODEL 111/4 ALDS

Description:

The contents of the memory address specified by the sum of the contents of the
Index Register IX and a two's complement displacement integer d, are rotated
left: the contents of bit 0 is copied into bit I; the previous content of bit I is
copied into bit 2; this pattern is continued throughout the byte. The content of bit
7 is copied into the Carry Flag (C flag in register F) and also into bit 0. Bit 0 is
the least significant bit.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory
location 1002H are

7 6 5 4 3 2 I 0

I O O O I O O 0

after the execution of

RLC (IX+2H)

the contents of the Carry Flag and memory location 1002H will be

C 7 6 5 4 3 2 I 0

[I] I O O O I O O O I

RLC (IV +d)
Operation: I CY I ~ 7 Q-0 I J

(IV +d)
Format:

Mnemonic: RLC Operands: (IY + d)

234

Rotate Left Circular

ROTATE AND SHIFT GROUP

Object Code:

FD

CB

I O : 0 : 0 : 0 : 0 : I : I : 0 I 06

Description:

The contents of the memory address specified by the sum of the contents of the
Index Register IY and a two's complement displacement integer d are rotated left:
the content of bit 0 is copied into bit 1; the previous content of bit 1 is copied into
bit 2; this process is continued throughout the byte. The content of bit 7 is copied
into the Carry Flag (C flag in register F) and also into bit 0. Bit 0 is the least
significant bit.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

Example:

If the contents of the Index Register IY are 1000H, and the contents of memory
location 1002H are

7 6 5 4 3 2 1 0

1 0 0 0 1 0 0 0

235

MODEL 111/4 ALDS

after the execution of

RLC (IY +2H)

the contents of the Carry Flag and memory location 1002H will be

C 7 6 5 4 3 2 1 0

1 o I o I o 1 1 1 o I o I o 1 1

Rlm
Operation:~ ¢-1 7 <,O I ;J

m
Format:

Mnemonic: RL Operands: m

Rotate Left

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

RLr

RL (HL)

RL (IX+d)

236

l<<0:0:<0:< 11
I O : 0 : 0 : I : 0 : r : r : r I

li'.<O:o:i'.O:i'.11
10:o:o:i:O>>:OI
li'.< 0 >>>:0>I
!1:i:o:O:i'.O:i'.11
1d:d:d:d:d:d:d:d1
/0:o:O>:O>>:OI

CB

CB

16

DD

CB

16

ROTATE AND SHIFT GROUP

RL (IY +d) /1;i;i:i:i:i:o:i1
l1:i;o;o;i;o;i;11
lct'.ct'.ct'.ct'.ct'.ct'.ct'.ctl

lo'.o'.O:<O:i'.< 0 1

FD

CB

16

r identifies register B, C, D, E, H, L or A specified as follows in the assembled
object code above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The contents of the m operand are rotated left: the content of bit 0 is copied into
bit 1; the previous content of bit 1 is copied into bit 2; this pattern is continued
throughout the byte. The content of bit 7 is copied into the Carry Flag (C flag in
register F) and the previous content of the Carry Flag is copied into bit 0. Bit 0 is
the least significant bit.

M 4MHz
Instruction Cycles T States E.T. 'in µs

RLr 2 8(4,4) 2.00
RL (HL) 4 15(4,4,4,3) 3.75
RL (IX+d) 6 23(4,4,3,5,4,3) 5.75
RL (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 7 of source register

237

MODEL 111/4 ALDS

Example:

If the contents of the Carry Flag and register D are

C 7 6 5 4 3 2 1 0

1110101011 1 1 1

after the execution of

RL D

the contents of the Carry Flag and register D will be

C 7 6 5 4 3 2 1 0

1 1010101111 1 1101

RRCm Rotate Right Circular

Operation:~ I 7-¢ 0 ~ICY I
m

Format:

Mnemonic: RRC Operands: m

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

RRCr I 1 : 1 :o:o: 1 :o: 1
:

1 I CB

10:0:o:O: 1 >>>I
RRC (HL) I 1

:
1 : 0 :a: 1 :o: 1 : 1 I CB

Jo:o:o:o:i; 1 :
1 : o I 0E

238

ROTATE AND SHIFT GROUP

RRC (IX+d) I 1 : 1 :o: 1 : 1 : 1 ;o: 1 I DD

I 1 : 1 :o:o: 1 :o: 1 : 1 I CB

1d:d:d:d:d:d:d:d1

Io: o: o: o; 1 : 1 : 1 :01 0E

RRC (IY +d) I 1 : 1 :
1 : 1 :

1
: 1 :o: 1 I FD

I 1
:

1 : 0: 0: 1 :o: 1
:

1 I CB

1d:d:d:d:d:d:d:d1

lo:o:o:o: 1
:

1
:

1 : 0 I 0E

r identifies register B, C, D, E, H, Lor A specified as follows in the assembled
object code above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The contents of operand m are rotated right: the content of bit 7 is copied into bit
6; the previous content of bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit 0 is copied into the Carry Flag (C flag in
the F register) and also into bit 7. Bit 0 is the least significant bit.

239

MODEL 111/4 ALDS

M
Instruction Cycles TStates

RRCr 2 8(4,4)
RRC (HL) 4 15(4,4,4,3)
RRC (IX+d) 6 23(4,4,3,5,4,3)
RRC (IY +d) 6 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

Example:

If the contents of register A are

7 6 5 4 3 2 1 0

I O I 0 1 1 0 0 0 1

after the execution of

RRC A

the contents of register A and the Carry Flag will be

7 6 5 4 3 2 1 0 C

1 0 0 1 1 0 0 0 I DJ

RRm
Operation:~ I 7-Q O k> ccij]

m
Format:

Mnemonic: RR Operands: m

4MHz
E.T. in µs

2.00
3.75
5.75
5.75

Rotate Right

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

240

ROTATE AND SHIFT GROUP

Object Code:

RRr I I ;i ;o ;o :i ;o ;i :i I CB

I O : 0 : 0 : I : I : r : r : r I

RR (HL) I 1 : I : 0 : 0 : I : 0 : I : I I CB

10:0:0:i:i:i:i:01 IE

RR (IX+ d) I 1 : I : 0 : I : I : I : 0 : I I DD

l1:i;o:o:i:o;i:11 CB

1d:d:d:d:d:d:d:d1

10:0:0:i:i:i:i:01 IE

RR (IY+ d) j 1 : I : I : I : I : I : o; I I FD

1i:i:o:o:i:o;i:1/ CB

1d:d:d:d:d:d:d:d1

lo:O:O>>>'.i:01 IE

r identifies registers B, C, D, E, H, Lor A specified as follows in the assembled
object code above:

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

241

MODEL 111/4 ALDS

Description:

The contents of operand m are rotated right: the contents of bit 7 is copied into
bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued
throughout the byte. The content of bit 0 is copied into the Carry Flag (C flag in
register F) and the previous content of the Carry Flag is copied into bit 7. Bit 0 is
the least significant bit.

M 4MHz
Instruction Cycles TStates E.T. in µs

RRr 2 8(4,4) 2.00
RR (HL) 4 15(4,4,4,3) 3.75
RR (IX+d) 6 23(4,4,3,5,4,3) 5.75
RR (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

Example:

If the contents of the HL register pair are 4343H, and the contents of memory
location 4343H and the Carry Flag are

7 6 5 4 3 2 1 0 C

11111011111110111[]]

after the execution of

RR (HL)

the contents of location -4343H and the Carry Flag will be

7 6 5 4 3 2 1 0 C

101111101111111010]

SLAm
Operation: I CY I ¢-1 7 ¢-0 I ¢-0

m
Format:

Mnemonic: SLA Operands: m

242

Shift Left Arithmetic

ROTATE AND SHIFT GROUP

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

SLAr

SLA (HL)

SLA (IX+d)

SLA (IY +d)

1i:i;o;o;i;o:i: 11
I O : 0 : I : 0 : 0 : r : r : r I

li'.i'.0:0: 1 :0'.i'.il

CB

CB

IO: 0: I : 0: 0: I : I : 0 I 26

Ii; i;o: i: i; <O: I J

1i;i;o;o;i:o;1:il
1d:d:d:d:d:d:d:d1

DD

CB

IO: 0: I : 0: 0: I : I : 0 I 26

l<<<<<<0: 1 1
li'.<0:0:< 0 '.i'.iJ
1d:d:d:d:d:d:d:d1

Jo:o:i'.O:O:i'.i'.oJ

FD

CB

26

r identifies registers B, C, D, E, H, Lor A specified as follows in the assembled
object code field above:

243

MODEL 111/4 ALDS

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

An arithmetic shift left is performed on the contents of operand m: bit 0 is reset,
the previous content of bit 0 is copied into bit 1, the previous content of bit 1 is
copied into bit 2; this pattern is continued throughout; the content of bit 7 is
copied into the Carry Flag (C flag in register F). Bit 0 is the least significant bit.

M
Instruction Cycles TStates

SLAr 2 8(4,4)
SLA (HL) 4 15(4,4,4,3)
SLA (IX+d) 6 23(4,4,3,5,4,3)
SLA (IY +d) 6 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 7

Example:

If the contents of register L are

7 6 5 4 3 2 1 0

1 0 1 1 0 0 0 1

after the execution of

SLA L

the contents of the Carry Flag and register L will be

C 7 6 5 4 3 2 1 0

0 1 1 0 0 0 1101

244

4MHz
E.T. in µs

2.00
3.75
5.75
5.75

ROTATE AND SHIFT GROUP

SRAm

Operation: ~ J CY I
Format:

Mnemonic: SRA Operands: m

Shift Right Arithmetic

Them operand is any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

SRAr I 1 : 1 :o;o; 1 :o; 1 : 1 I CB

10:0: 1 :o; 1 >>>I
SRA (HL) I 1

:
1 :o;o; 1 :o; 1 : 1 I CB

10:0: 1 :o; 1 : 1 : 1 : 0 I 2E

SRA (IX+d) I 1 : 1 :o; 1 : 1
:

1 :o; 1 I DD

I 1
:

1 :o;o; 1 :o: 1
:

1 I CB

1d:d:d:d:d:d:d:d1

10:0: 1 : 0: 1 : 1 : 1 : 0 I 2E

245

MODEL 111/4 ALDS

SRA (IY +d) I 1 : 1 : 1 : 1 : 1 : 1 : 0: 1 I FD

I 1 : 1 :o:o: 1 : 0: 1 : 1 I CB

1d:d:d:d:d:d:d:d1

IO :0: 1 : 0: 1
:

1 : 1 : 0 I 2E

r means register B, C, D, E, H, Lor A specified as follows in the assembled
object code field above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

An arithmetic shift right is performed on the contents of operand m: the content
of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this
pattern is continued throughout the byte. The content of bit 0 is copied into the
Carry Flag (C flag in register F), and the previous content of bit 7 is unchanged.
Bit 0 is the least significant bit.

M 4MHz
Instruction Cycles T States E.T. in µs

SRAr 2 8(4,4) 2.00
SRA (HL) 4 15(4,4,4,3) 3.75
SRA (IX+d) 6 23(4,4,3,5,4,3) 5.75
SRA (IY +d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

246

ROTATE AND SHIFT GROUP

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory
location 1003H are

7 6 5 4 3 2 1 0

11 1°1 1 11 11 1°1°1°1
after the execution of

SRA (IX+3H)

the contents of memory location 1003H and the Carry Flag will be

7 6 5 4 3 2 1 0 C

1 11011 11110101[I]

SRLm
Operation: 0-Q I 7-¢ 0 ~ I CY I

m
Format:

Mnemonic: SRL Operands: m

Shift Right Logical

The operand mis any of r, (HL), (IX+ d) or (IY + d), as defined for the
analogous RLC instructions. These various possible opcode-operand
combinations are specified as follows in the assembled object code:

Object Code:

SRLr I 1 : 1 :o:o: 1 : 0: 1 : 1 I CB

10:0: 1
:

1
:

1 >>>I
SRL (HL) I 1 : 1 : 0: 0: 1 :o: 1

:
1 I CB

Io: o: 1 : 1
:

1 : 1 : 1 :01 3E

247

MODEL 111/4 ALDS

SRL(IX+d) I l : l :a: l
: l : l :a: l I DD

I l
: l :o:o: l :o: l :

l I CB

1d:d:d:d:d:d:d:d1

I 0: 0: l
:

l
:

l
:

l
:

l : 0 I 3E

SRL (IY +d) I l : l : l :
1 : 1 : l : 0: 1 I FD

I 1
: 1 :o:o: l : 0: l : 1 I CB

1d:d:d:d:d:d:d:d1

Io: o: 1 : 1 : 1 l : l :01 3E

r identifies registers B, C, D, E, H, Lor A specified as follows in the assembled
object code fields above:

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

Description:

The contents of operand m are shifted right: the content of bit 7 is copied into bit
6; the content of bit 6 is copied into bit 5; this pattern is continued throughout the
byte. The content of bit 0 is copied into the Carry Flag, and bit 7 is reset. Bit 0 is
the least significant bit.

248

M
Instruction Cycles TStates

SRLr 2 8(4,4,)
SRL (HL) 4 15(4,4,4,3)
SRL (IX d) 6 23(4,4,3,5,4,3)
SRL (IY +d) 6 23(4,4,3,5,4,3)

Condition Bits Affected:

S: Set if result is negative; reset otherwise
Z: Set if result is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Data from Bit 0 of source register

Example:

If the contents of register B are

7 6 5 4 3 2 l 0

1110101011 1 1 1
after the execution of

SRL B

the contents of register B and the Carry Flag will be

7 6 5 4 3 2 1 0 C

101110101011 1111[0

ROTATE AND SHIFT GROUP

4MHz
E.T. in µs

2.00
3.75
5.75
5.75

RLD ___ Rotate Left Decimal

I 1
Operation: Al7 4lrl 11 y1y1 (HL)

Format:

Mnemonic: RLD Operands:

249

MODEL 111/4 ALDS

Object Code:

6F

Description:

The contents of the low order four bits (bits 3, 2, 1 and 0) of the memory
location (HL) are copied into the high order four bits (7, 6, 5 and 4) of that same
memory location; the previous contents of those high order four bits are copied
into the low order four bits of the Accumulator (register A), and the previous
contents of the low order four bits of the Accumulator are copied into the low
order four bits of memory location (HL). The contents of the high order bits of
the Accumulator are unaffected. Note: (HL) means the memory location
specified by the contents of the HL register pair.

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHz E.T.: 4.50

Condition Bits Affected:

S: Set if Acc. is negative after operation; reset otherwise
Z: Set if Acc. is zero after operation; reset otherwise
H: Reset
P/V: Set if parity of Acc. is even after operation; reset otherwise
N: Reset
C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the contents of the
Accumulator and memory location 5000H are

7 6 5 4 3 2 1 0

0 1 1 1 1 0 1 0 Accumulator

7 6 5 4 3 2 1 0

0 0 1 1 0 0 0 1 (5000H)

250

ROTATE AND SHIFT GROUP

after the execution of

RLD

the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 1 0

I O I 1 1 1 0 0 1 1

7 6 5 4 3 2 1 0

I O I 0 0 1 1 0 1 0

ARD
Operation: Al7 413

101 f 4 3 0

Format:

Mnemonic: RRD Operands:

Object Code:

1i:i:i:o:i:i:0: 1 I
10:i:i:o:o:i:i: 1 1
Description:

Accumulator

(5000H)

Rotate Right Decimal

(HL)

ED

67

The contents of the low order four bits (bits 3, 2, 1 and 0) of memory location
(HL) are copied into the low order four bits of the Accumulator (register A); the
previous contents of the low order four bits of the Accumulator are copied into
the high order four bits (7, 6, 5 and 4) of location (HL); and the previous contents
of the high order four bits of (HL) are copied into the low order four bits of (HL).
The contents of the high order bits of the Accumulator are unaffected. Note:
(HL) means the memory location specified by the contents of the HL register
pair.

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHz E.T.: 4.50

251

MODEL 111/4 ALDS

Condition Bits Affected:

S: Set if Acc. is negative after operation; reset otherwise
Z: Set if Acc. is zero after operation; reset otherwise
H: Reset
P/V: Set if parity of Acc. is even after operation; reset otherwise
N: Reset
C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the contents of the
Accumulator and memory location 5000H are

7 6 5 4 3 2 1 0

I 1 I 0 0 0 0 1 0 I O I Accumulator

7 6 5 4 3 2 1 0

I O I 0 1 0 0 0 0 0 (5000H)

after the execution of

RRD

the contents of the Accumulator and memory location 5000H will be

6 5 4 3 2 1 0

I 1 I 0 0 0 0 0 0 0 Accumulator

7 6 5 4 3 2 1 0

I O I 1 0 0 0 0 1 0 (5000H)

252

BIT SET, RESET AND TEST GROUP

Bit Set, Reset and Test Group

BIT b, r BIT test

Operation: 2 Q f b

Format:

Mnemonic: BIT Operands: b, r

Object Code:

li'.i'.o:o:i'.0:<11 CB

I O : l : b : b : b : r : r : r I

Description:

After the execution of this instruction, the Z flag in the F register will contain the
complement of the indicated bit within the indicated register. Operands b and r
are specified as follows in the assembled object code:

Bit
Tested b Register r

0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

253

MODEL 111/4 ALDS

Example:

If bit 2 in register B contains 0, after the execution of

BIT 2, B

the Z flag in the F register will contain 1, and bit 2 in register B will remain 0.
(Bit 0 in register B is the least significant bit.)

BIT b,(HL)
Operation: Z ¢ (HL)b

Format:

Mnemonic: BIT Operands: b, (HL)

Object Code:

J1:i:o:o:i:o:i:11
1°>>>>>>:0I
Description:

Bit Test

CB

This instruction tests bit b in the memory location specified by the contents of
the HL register pair and sets the Z flag accordingly. Operand b is specified as
follows in the assembled object code:

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T.: 3.00

254

BIT SET, RESET AND TEST GROUP

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
H: Reset
C: Not affected

Example:

If the HL register pair contains 444H, and bit 4 in the memory location 444H
contains 1, after the execution of

BIT 4,(HL)

the Z flag in the F register will contain 0, and bit 4 in memory location 444H will
still contain 1. (Bit 0 in memory location 444H is the least significant bit.)

BIT b,(IX + d)
Operation: 2¢ (IX +d)b

Format:

Mnemonic: BIT Operands: b, (IX+ d)

Object Code:

1i:i:o:i:i:i:0: 1 I

1i:i;O:o'.i'.O:i'.1!
1d:d:d:d:d:d:d:d1
!o'.i>>>'.i'.i:01
Description:

DD

CB

Bit Test

After the execution of this instruction, the Z flag in the F register will contain the
complement of the indicated bit within the contents of the memory location
pointed to by the sum of the contents register pair IX (Index Register IX) and the
two's complement displacement integer d. Operand bis specified as follows in
the assembled object code.

255

MODEL 111/4 ALDS

Bit
Tested

0
1
2
3
4
5
6
7

M

b
000
001
010

1
100
101
110
1 1

5 T states: 20(4,4,3,5,4)

Condition Bits Affected:

S: Unknown

4 MHz E.T.: 5.00

Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

Example:

If the contents of Index Register IX are 2000H, and bit 6 in memory location
2004H contains 1, after the execution of
BIT 6,(IX +4H)
the Z flag in the F register will contain 0, and bit 6
will still contain 1. (Bit 0 in memory location 2004H is the

BIT b,(IY + d)
Operation: 2¢ (IV +d)b
Format:

Mnemonic: BIT Operands: b, (IY + d)

Object Code:

/1>'.i>'.i'.i:O'.il
1i:i:o:o:i:o:i: 1 I
/ct:d:d:d:d:d:d:dl

/o'.i>>>'.i'.i:o/

256

FD

CB

BIT

BIT SET, RESET AND TEST GROUP

Description:

After the execution of this instruction, the Z flag in the F register will contain
the complement of the indicated bit within the contents of the memory location
pointed to by the sum of the contents of register pair IY (Index Register IY) and
the two's complement displacement integer d. Operand b is specified as follows
in the assembled object code:

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 5 T states: 20(4,4,3,5,4) 4 MHz E.T.: 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise
H: Set
P/V: Unknown
N: Reset
C: Not affected

Example:

If the contents of Index Register are 2000H, and bit 6 in memory location
2004H contains 1, after the execution of

BIT 6,(IY + 4H)

the Z flag in the F register still contain 0, and bit 6 in memory location 2004H
will still contain 1. (Bit 0 in memory location 2004H is the least significant bit.)

SET b,r
Operation: r b ¢ 1

Format:

Mnemonic: SET Operands: b, r

257

MODEL 111/4 ALDS

Object Code:

!<< 0 :0>:0>>I
11 >>>>>>>1
Description:

CB

Bit b (any bit, 7 through 0) in register r (any of register B, C, D, E, H, Lor A) is
set. Operands band rare specified as follows in the assembled object code:

Bit
Tested b Register r

0 000 B 000
1 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

M cycles: 2 T states: 8(4,4)

Condition Bits Affected: None

Example:

After the execution of

SET 4,A

4 MHz E.T.: 2.00

bit 4 in register A will be set. (Bit 0 is the least significant bit.)

SET b,(HL)
Operation: (HL)b ¢ 1

Format:

Mnemonic: SET Operands: b, (HL)

258

BIT SET, RESET AND TEST GROUP

Object Code:

1i:i:o:o:i:o:i: 1 1
11 >>>>>>:0I
Description:

CB

Bit b (any bit, 7 through 0) in the memory location addressed by the contents of
register pair HL is set. Operand b is specified as follows in the assembled object
code:

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected: None

Example:

If the contents of the HL register pair are 3000H, after the execution of

SET 4,(HL)

bit 4 in memory location 3000H will be 1. (Bit 0 in memory location 3000H
is the least significant bit.)

SET b,(IX + d)
Operation: (IX + d)b ¢ 1

Format:

Mnemonic: SET Operands: b, (IX+ d)

259

MODEL 111/4 ALDS

Object Code:

1i:i:a:a:i;o;i;11 CB

1d:d:d:d:d:d:d:d1

Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the
contents of the IX register pair (Index Register IX) and the two's complement
integer d is set. Operand b is specified as follows in the assembled object code:

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected: None

Example:

If the contents of Index Register are 2000H, after the execution of

SET 0,(IX + 3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in memory location 2003H
is the least significant bit.)

260

BIT SET, RESET AND TEST GROUP

SET b,(IY + d)
Operation: (IV+ d)b ¢ 1

Format:

Mnemonic: SET Operands: b, (IY + d)

Object Code:

l1 >>>>>:0>I
1i;i;o;o;i;o:i: 1

1

1d:d:d:d:d:d:d:d1

l1 >>>>>>:0I
Description:

FD

CB

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the
contents of the IY register pair (Index Register IY) and the two's complement
displacement dis set. Operand bis specified as follows in the assembled object
code:

Bit
Tested b

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected: None

261

MODEL 111/4 ALDS

Example:

If the contents of Index Register IY are 2000H, after the execution of

SET 0,(IY + 3H)

bit 0 in memory location 2003H will be 1. (Bit 0 in memory location 2003H
is the least significant bit.)

RES b,m
Operation: Sb ¢ 0

Format:

Mnemonic: RES

RESet

Operands: b, m

Operand b is any bit (7 through 0) of the contents of them operand, (any of r,
(HL), (IX+ d) or (IY + d) as defined for the analogous SET instructions. These
various possible opcode-operand combinations are assembled as follows in the
object code:

Object Code:

RESb,r I i'. 1 : 0: 0: i'. 0: i'. 1 I
I 1 : 0 : b : b : b : r : r : r I

RES b, (HL) I 1 : 1 : o; 0: 1 : 0: 1 : 1 I

11:0>>>>>:0I
RES b, (IX+ d) I 1 : 1 : 0 : 1 : 1 : 1 : 0 : 1 I

262

li'.<O:O:i'.O:i'. 1 1
1d:d:d:d:d:d:d:d1

11:0>>>>>:01

CB

CB

DD

CB

BIT SET, RESET AND TEST GROUP

RES b, (IY + d) I I : I : I : I :
I

:
I :o: I I FD

I I :
I :o:o: I :o: I

:
I I CB

l<<<<<d:d:dl
I I :o>>>: I : I : 0 I

Bit
Reset b Register r

0 000 B 000
I 001 C 001
2 010 D 010
3 011 E 011
4 100 H 100
5 101 L 101
6 110 A 111
7 111

Description:

Bit bin operand mis reset.

M 4MHz
Instruction Cycles T States E.T. in µs

RESr 4
RES (HL) 4
RES (IX+d) 6
RES (IY +d) 6

Condition Bits Affected: None

Example 1:

After the execution of

8(4,4)
15(4,4,4,3)
23(4,4,3,5,4,3)
23(4,4,3,5,4,3)

RES 6,D (object code CB, B2H)

2.00
3.75
5.75
5.75

bit 6 in register D will be reset. (Bit 0 in register D is the least significant bit.)

Example 2:

If HL contains 7000H and address 7000H contains FFH, after

RES 0,(HL)

address 7000H will contain FEH.

263

JUMP GROUP

Jump Group

JPnn JumP

Operation: PC ¢ nn

Format:

Mnemonic: JP Operands: nn

Object Code:

C3

Note: The first operand in this assembled object code is the low order byte of a
2-byte address. ·

Description:

Operand nn is loaded ·into register pair PC (Program Counter) and points to the
address of the next program instruction to be executed.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

JP 50A1H

This instruction will cause the program to jump to the instruction at 50A 1 H by
loading the number 50A 1 H into the PC register.

265

MODEL 111/4 ALDS

JP cc,nn
Operation: IF cc TRUE, PC¢ nn

Format:

Mnemonic: JP Operands: cc, nn

Object Code:

!1:1'.cc'.cc'.c<o:1:01

ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

JumP

Note: The first n operand in this assembled object code is the low order byte of a
2-byte memory address.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at
address nn. If condition cc is false, the Program Counter is incremented as usual,
and the program continues with the next sequential instruction. Condition cc is
programmed as one of eight status bits which correspond to condition bits in the
Flag Register (register F). These eight status bits are defined in the table below,
which also specifies the corresponding cc bit fields in the assembled object code.

cc Condition

000 NZ non zero
001 Z zero
010 NC non carry
011 C carry
100 PO parity odd
101 PE parity even
110 P sign positive
111 M sign negative

Relevant
Flag

Z (=0)
Z (= 1)
C (=0)
C (= 1)
P/V(=0)
P/V(1)
S (=0)
s (= 1)

M cycles: 3 T states: 10(4,3,3)

Condition Bits Affected: None

266

4 MHz E.T.: 2.50

JUMP GROUP

Example:

If the Carry Flag (C flag in the F register) is set and the contents of address 1520
are 03H, after the execution of

JP C,1520H

the Program Counter will contain 1520H, and on the next machine cycle the CPU
will fetch from address 1520H the byte 03H.

JRe
Operation: PC ¢ PC + e

Format:

Mnemonic: JR Operands: e

Object Code:

I O : 0 : 0 : I : I : 0 : 0 : 0 I

le-2: e-2: e-2: e-2: e-2: e-2: e-2: e-21

Description:

Jump Relative

18

This instruction provides for unconditional branching to other segments of a
program. The value of the displacement e is added to the Program Counter (PC)
and the next instruction is fetched from the location designated by the new
contents of the PC. This jump as measured from the address of the instruction
opcode has a range of 126 to + 129 bytes. The assembler automatically adjusts
for the twice incremented PC.

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

Condition Bits Affected: None

Example 1:

To jump forward five locations from address 480, the following assembly
language statement is used:

JR $+5

The resulting object code and final PC value is shown below:

267

MODEL 111/4 ALDS

Location Instruction
18

481 03
-¢ PC before jump

484
485 ¢ PC after jump

Note: when using an assembler, $ + 5 used above would normally be replaced by
a

Example 2:

This program will skip around the NOP instruction.

START JR, END
NOP

END

JRC,e
Operation: If C = 0, continue

If C=1, PC¢PC+e

Format:

Mnemonic: JR Operands: C, e

Object Code:

Io: o: 1 : 1 : 1 : o: o: o I 38

I e-2 : e-2 : e-2 : e-2 : e-2 : e-2 : e-2 : e-21

Description:

Jump Relative

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is equal
to 1, the value of the displacement e is added to the Program Counter (PC) and
the next instruction is fetched from the location designated by the new contents
of the PC. The jump as measured from the address of the instruction opcode has
a range - 126 to + 129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the flag is equal to a '0: the next instruction to be executed is taken from the
location following this instruction.

268

If condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

If condition is not met:

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is set and it is required to jump back four locations from 480.
The assembly language statement is:

JR C, $ 4

The resulting object code and final PC value is shown below:

Location Instruction
47C ¢ PC after jump
47D
47E
47F
480
481
482

38
FA (two's complement - 6)
¢ PC before jump

JUMP GROUP

JR NC,e Jump Relative

Operation: If C = 1, continue
If C=0, PC¢PC+e

Format:

Mnemonic: JR Operands: NC, e

Object Code:

I O : 0 : I : I : 0 : 0 : 0 : 0 I

le-2: e-2: e-2: e-2: e-2: e-2: e-2: e-21

Description:

30

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Carry Flag. If the flag is equal
to '0; the value of the displacement e is added to the Program Counter (PC) and

269

MODEL 111/4 ALDS

the next instruction is fetched from the location designated by the new contents
of the PC. The jump as measured from the address of the instruction opcode has
a range of -126 to + 129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the flag is equal to a ' 1: the next instruction to be executed is taken from the
location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

If the condition is not met:

M cycles: 7 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the jump instruction.
The assembly language statement is:

JR NC,$

The resulting object code and PC after the jump are shown below:

Location Instruction

480 30 ¢ PC after jump
481 FD (two's complement- 2)
482 -¢PC before jump

Note: this instruction would cause an infinite loop in the program.

JRZ,e
Operation: 2 = 0, continue

If 2=1, PC¢PC+e

Format:

Mnemonic: JR Operands: Z, e

Object Code:

I o : o : 1 : o : 1 : o : o : o I

je-2: e-2: e-2: e-2: e-2: e-2: e-2: e-21

270

Jump Relative

28

JUMP GROUP

Description:

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Zero Flag. If the flag is equal to
a '1; the value of the displacement e is added to the Program Counter (PC) and
the next instruction is fetched from the location designated by the new contents
of the PC. The jump as measured from the address of the instruction opcode has
a range of - 126 to + 129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the Zero Flag is equal to a '0; the next instruction to be executed is taken from
the location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3 ,5) 4 MHz E.T.: 3.00

If the condition is not met:

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is set and it is required to jump forward five locations from
address 300. The following assembly language statement is used:

JR Z, $+5

The resulting object code and final PC value is shown below:

Location Instruction

300 28
301 03
302 -¢ PC before jump
303
304
305 - ¢ PC after jump

JR NZ,e
Operation: If Z = 1, continue

If 2=0, PC¢ PC+e

Format:

Mnemonic: JR Operands: NZ, e

Jump Relative

271

MODEL 111/4 ALDS

Object Code:

I e-2: e-2: e-2: e-2: e-2: e-2: e-2: e-21

Description:

This instruction provides for conditional branching to other segments of a
program depending on the results of a test on the Zero Flag. If the flag is equal to
a '0; the value of the displacement e is added to the Program Counter (PC) and
the next instruction is fetched from the location designated by the new contents
of the PC. The jump as measured from the address of the instruction opcode has
a range of - 126 to + 129 bytes. The assembler automatically adjusts for the
twice incremented PC.

If the Zero Flag is equal to a ' 1; the next instruction to be executed is taken from
the location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

If the condition is not met:

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is reset and it is required to jump back four locations from 480.
The assembly language statement is:

JR NZ, $-4

The resulting object code and final PC value is shown below:

Location Instruction

47C ¢PC after jump
47D
47E
47F
480 20
481 FA (two's complement - 6)
482 -¢ PC before jump

272

JUMP GROUP

JP (HL) Jump

Operation: PC ¢ HL

Format:

Mnemonic: JP Operands: (HL)

Object Code:

Description:

The Program Counter (register pair PC) is loaded with the contents of the HL
register pair. The next instruction is fetched from the location designated by the
new contents of the PC.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example 1:

If the contents of the Program Counter are 1000H and the contents of the HL
register pair are 4800H, after the execution of
JP (HL)

the contents of the Program Counter will be 4800H.
The program will jump to the instruction at address 4800H.

Example 2:

A typical software routine which uses JP (HL) is a jump table lookup program.
Assume that n 16-bit addresses are listed in consecutive bytes of memory starting
at address TBL. Also assume that the Accumulator contains a number from 0 to
n-1 representing the routine to be jumped to.

LD HL, TBL ; HL points to the first byte in the table.
ADD A, A ; double A
LD DE,0
LD E,A
ADD HL, DE ; if A originally contained 5, then HL now points to the 5th

LD
INC
LD
LD
JP

E, (HL)
HL
D, (HL)
HL,DE
(HL)

address in the table

; DE now contains the 5th address of the table
; HL now contains the 5th address of the table

273

MODEL 111/4 ALDS

JP (IX)
Operation: PC ¢ IX

Format:

Mnemonic: JP Operands: (IX)

Object Code:

1i:i:o:i:i:i:0: 1 I
1i:i:i:o:i:o:o: 1 1
Description:

DD

E9

The Program Counter (register pair PC) is loaded with the contents of the

JumP

IX Register Pair (Index Register IX). The next instruction is fetched from the
location designated by the new contents of the PC.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H, and the contents of the
IX Register Pair are 4800H, after the execution of

JP (IX)

the contents of the Program Counter will be 4800H.

JP (IV) JumP

Operation: PC¢ IV

Format:

Mnemonic: JP Operands: (IY)

274

Object Code:

I< 1 : 1 : 1 : 1 : 1 : 0: 1 I FD

I 1 : 1 : 1 ;o;i;o:o: 1 I E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the
IY Register Pair (Index Register IY). The next instruction is fetched from the
location designated by the new contents of the PC.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the contents of the
IY Register Pair are 4800H, after the execution of
JP (IY)

the contents of the Program Counter will be 4800H.

JUMP GROUP

DJNZe Decrement Jump Not Zero

Operation:

Format:

Mnemonic: DJNZ Operands: e

Object Code:

Jo:o:o: 1 :o:o:o:oJ

I e-2: e-2: e-2: e-2: e-2: e-2: e-2: e-21

Description:

10

The instruction is similar to the conditional jump instructions except that a
register value is used to determine branching. The B register is decremented
and if a non zero value remains, the value of the displacement e is added to
the Program Counter (PC). The next instruction is fetched from the location

275

MODEL 111/4 ALDS

designated by the new contents of the PC. The jump is measured from
the address of the instruction opcode has a range of 126 to + 129 bytes.
The assembler automatically adjusts for the twice incremented PC.

If the result of decrementing leaves B with a zero value, the next instruction
to be executed is taken from the location following this instruction.

If B 4: 0:

M cycles: 3

IfB=0:

T states: 13(5,3,5) 4 MHz E.T.: 3.25

M cycles: 2 T states: 8(5,3) 4 MHz E.T.: 2.00

Condition Bits Affected: None

Example:

A typical software routine is used to demonstrate the use of the DJNZ
instruction. This routine moves a line from an input buffer (INBUF) to an output
buffer (OUTBUF). It moves the bytes until it finds a carriage return, or until it
has moved 80 bytes, whichever occurs first.

LD B, 80 ; Set up counter
LD HL, Inbuf ; Set up pointers
LD DE, Outbuf

LOOP: LD A, (HL) ; Get next byte from
· input buffer

LD (DE), A ; Store in output buffer
CP 0DH ; Is it a CR?
JR Z, DONE ; Yes finished
INC HL ; Increment pointers
INC DE
DJNZ LOOP ; Loop back if 80

; bytes have not
; been moved

DONE:

276

CALL AND RETURN GROUP

Call and Return Group

CALLnn
Operation: (SP 1) ¢ PCH, (SP - 2) ¢ PCL, PC¢ nn

Format:

Mnemonic: CALL Operands: nn

Object Code:

l<<<<<<0: 1 1
ln:n:n:n:n:n:n:nl

ln:n:n:n:n:n:n:nl

CD

Note: The first of the two n operands in the assembled object code above is the
least significant byte of a two-byte memory address.

Description:

After pushing the current contents of the Program Counter (PC) onto the top of
the external memory stack, the operands nn are loaded into PC to point to the
address in memory where the first opcode of a subroutine is to be fetched. (At
the end of the subroutine, a RETurn instruction can be used to return to the
original program flow by popping the top of the stack back into PC.) The push is
accomplished by first.decrementing the current contents of the Stack Pointer
(register pair SP), loading the high-order byte of the PC contents into the
memory address now pointed to by the SP; then decrementing SP again, and
loading the low-order byte of the PC contents into the top of stack. Note:
Because this is a three-byte instruction, the Program Counter will have been
incremented by three before the push is executed.

M cycles: 5 T states: 17(4,3,4,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 4.25

If the contents of the Program Counter are 1A47H, the contents of the Stack
Pointer are 3002H, and memory locations have the contents:

277

MODEL 111/4 ALDS

Location Contents
1A47H CDH
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte instruction CD3521H
will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL 2135H

After the execution of this instruction, the contents of memory address 3001H
will be lAH, the contents of address 3000H will be 4AH, the contents of the
Stack Pointer will be 3000H, and the contents of the Program Counter will be
2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

Before:

Stack Pointer Address Stack
3002 3002 50

3003 1B
3004 3C

Program Counter
1A47

After CALL 2135H:

Stack Pointer Address Stack
3000 3000 4A

3001 lA
3002 50
3003 1B

Program Counter
2135

CALLcc,nn
Operation: IF cc TRUE: (SP-1) ¢ PCH

(SP-2) ¢ PCL, PC¢nn

Format:

Mnemonic: CALL Operands: cc, nn

278

CALL AND RETURN· GROUP

Object Code:

Note: The first of the two n operands in the assembled object code above is the
least significant byte of the two-byte memory address.

Description:

If condition cc is true, this instruction pushes the current contents of the Program
Counter (PC) onto the top of the external memory stack, then loads the operands
nn into PC to point to the address in memory where the first opcode of a
subroutine is to be fetched. (At the end of the subroutine, a RETurn instruction
can be used to return to the original program flow by popping the top of the stack
back into PC.) If condition cc is false, the Program Counter is incremented as
usual, and the program continues with the next sequential instruction. The stack
push is accomplished by first decrementing the current contents of the Stack
Pointer (SP), loading the high-order byte of the PC contents into the memory
address now pointed to by SP, then decrementing SP again, and loading the low
order byte of the PC contents into the top of the stack. Note: Because this is a
three-byte instruction, the Program Counter will have been incremented by three
before the push is executed. Condition cc is programmed as one of eight status
bits which corresponds. to condition bits in the Flag Register (register F). Those
eight status bits are defined in the table below, which also specifies the
corresponding cc bit fields in the assembled object code:

Relevant
cc Condition Flag

000 NZ non zero z (=0)
001 Zzero z (= 1)
010 NC non carry C (=0)
011 C carry C (= 1)
100 PO parity odd P/V(=0)
101 PE parity even P/V(= 1)
110 P sign positive s (=0)
111 M sign negative s (= 1)

279

MODEL 111/4 ALDS

If cc is true:

M cycles: 5 T states: 17(4,3,4,3,3) 4 MHz E.T.: 4.25

If cc is false:

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the C Flag in the F register is reset, the contents of the Program Counter are
1A47H, the contents of the Stack Pointer are 3002H, and memory locations have
the contents:

Location Contents

1A47H D4H
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte instruction D43521H
will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL NC, 2135H

After the execution of this instruction, the contents of memory address 3001H
will be 1 AH, the contents of address 3000H will be 4 AH, the contents of the
Stack Pointer will be 3000H, and the contents of the Program Counter will be
2135H, pointing to the address of the first opcode of the subroutine now to be
executed.

RET RETurn

Operation: PCL ¢ (SP), PCH ¢(SP+ 1)

Format:

Mnemonic: RET Operands:

Object Code:

C9

Description:

Control is returned to the original program flow by popping the previous
contents.of the Program Counter (PC) off the top of the external memory stack,
where they were pushed by the CALL instruction. This is accomplished by first
loading the low-order byte of the PC with the contents of the memory address

280

CALL AND RETURN GROUP

pointed to by the Stack Pointer (SP), then incrementing the SP and loading the
high-order byte of the PC with the contents of the memory address now pointed
to by the SP. (The SP is now incremented a second time.) On the following
machine cycle the CPU will fetch the next program opcode from the location in
memory now pointed to by the PC.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 3535H, the contents of the Stack
Pointer are 2000H, the contents of memory location 2000H are B5H, and the
contents of memory location 2001H are 18H, then after the execution of

RET

the contents of the Stack Pointer will be 2002H and the contents of the Program
Counter will be 18B5H, pointing to the address of the next program opcode to be
fetched.

Before:

Program Counter Address Stack
3535 2000 B5

2001 18
2002 2E
2003 30

Stack Pointer
2000

After RET:

Program Counter Address Stack
18B5 2002 2E

2003 30

Stack Pointer
2002

RETcc RETurn

Operation: IF CC TRUE: PCL ¢ (SP), PCH ¢(SP+ 1)

Format:

Mnemonic: RET Operands: cc

281

MODEL 111/4 ALDS

Object Code:

Description:

If condition cc is true, control is returned to the original program flow by
popping the previous contents of the Program Counter (PC) off the top of the
external memory stack, where they were pushed by the CALL instruction. This is
accomplished by first loading the low-order byte of the PC with the contents of
the memory address pointed to by the Stack Pointer (SP), then incrementing the
SP, and loading the high-order byte of the PC with the contents of the memory
address now pointed to by the SP. (The SP is now incremented a second time.)
On the following machine cycle the CPU will fetch the next program opcode
from the location in memory now pointed to by the PC. If condition cc is false,
the PC is simply incremented as usual, and the program continues with the next
sequential instruction. Condition cc is programmed as one of eight status bits
which correspond to condition bits in the Flag Register F). These eight status bits
are defined in the table below, which also specifies the corresponding cc bit fields
in the assembled object code.

Relevant
cc Condition Flag

000 NZ non zero z (=0)
001 Zzero z (1)
010 NC non carry C (=0)
011 C carry C (1)
100 PO parity odd P/V(=0)
101 PE parity even P/V(= 1)
110 P sign positive s (0)
111 M sign negative s (= 1)

If cc is true:

M cycles: 3 T states: 11(5,3,3) 4 MHz E.T.: 2.75

If cc is false:

M cycles: 1 T states: 5 4 MHz E.T.: 1.25

Condition Bits Affected: None

Example:

If the S flag in the F register is set, the contents of the Program Counter are
3535H, the contents of the Stack Pointer are 2000H, the contents of memory
location 2000H are B5H, and the contents of memory location 2001H are 18H,
then after the execution of

RET M

282

CALL AND RETURN GROUP

the contents of the Stack Pointer will be 2002H and the contents of the Program
Counter will be 18B5H, pointing to the address of the next program opcode to be
fetched.

RETI
Operation: Return from interrupt

Format:

Mnemonic: RETI Operands:

Object Code:

l1:i;i;o;i;1:0'.il
lo'.i :0:o; i; i;o; JI

Description:

ED

4D

This instruction is used at the end of an interrupt service routine to:

1. Restore the contents of the Program Counter (PC) (analogous to the RET
instruction).

2. To signal an I/O device that the interrupt routine has been completed. The
RETI instruction facilitates the nesting of interrupts, allowing higher priority
devices to suspend service of lower priority service routines.

M cycles: 4 T states: 14(4,4,3,3)

Condition Bits Affected: None

Example:

4 MHz E.T.: 3.50

Given: Two interrupting devices, A and B, connected in a daisy chain
configuration with A having a higher priority than B.

+ A B
y IEI IEO H IEI IEO f-

l I
B generates an interrupt and is acknowledged. (The interrupt enable out, IEO,
of B goes low, blocking any lower priority devices from interrupting while B is
being serviced). Then A generates an interrupt, suspending service of B. (The

283

MODEL 111/4 ALDS

IEO of A goes 'low' indicating that a higher priority device is being serviced.)
The A routine is completed and a RETI is issued resetting the IEO of A,
allowing the B routine to continue. A second RETI is issued on completion of
the B routine and the IEO of B is reset (high), allowing lower priority devices
interrupt access.

RETN
Operation: Return from non maskable interrupt

Format:

Mnemonic: RETN Operands:

Object Code:

1i:i:i:o:i:i:o:,1
10:i:o:o:o:i:o:,1
Description:

ED

45

Used at the end of a service routine for a non maskable interrupt, this instruction
executes an unconditional return which functions identically to the RET
instruction. That is, the previously stored contents of the Program Counter (PC)
are popped off the top of the external memory stack; the low-order byte of PC is
loaded with the contents of the memory location pointed to by the Stack Pointer
(SP), SP is incremented, the high-order byte of PC is loaded with the contents of
the memory location now pointed to by SP, and SP is incremented again. Control
is now returned to the original program flow: on the following machine cycle the
CPU will fetch the next opcode from the location in memory now pointed to by
the PC. Also the state of IFF2 is copied back into IFFl to the state it had prior to
the acceptance of the NMI.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

If the contents of the Stack Pointer are 1000H and the contents of the Program
Counter are 1A45H when a non maskable interrupt (NMI) signal is received, the
CPU will ignore the next instruction and will instead restart to memory address
0066H. That is, the current Program Counter contents of 1 A45H will be pushed
onto the external stack address of 0FFFH and 0FFEH, high order byte first, and

284

CALL AND RETURN GROUP

0066H will be loaded onto the Program Counter. That address begins an interrupt
service routine which ends with RETN instruction. Upon the execution of
RETN, the former Program Counter contents are popped off the external
memory stack, low-order first, resulting in a Stack Pointer contents again of
1000H. The program flow continues where it left off with an opcode fetch to
address 1A45H.

RSTp ReSTart

Operation: (SP - 1) ¢ PCH, (SP - 2) ¢ PCL, PCH ¢ 0, PCL ¢ P

Format:

Mnemonic: RST Operands: P

Object Code:

Description:

The current Program Counter (PC) contents are pushed onto the external memory
stack, and the page zero memory location given by operand pis loaded into the
PC. Program execution then begins with the opcode in the address now pointed
to by PC. The push is performed by first decrementing the contents of the Stack
Pointer (SP), loading the high-order byte of PC into the memory address now
pointed to by SP, decrementing SP again, and loading the low-order byte of PC
into the address now pointed to by SP. The ReSTart instruction allows for a Call
to a subroutine at one of eight addresses as shown in the table below. The
operand p is assembled into the object code using the t column of the table.
Note: Since all addresses are in page zero of memory, the high order byte of PC
is loaded with 00H. The number selected from the "p" column of the table is
loaded into the low-order byte of PC.
At the end of the subroutine a RETurn instruction can be used to return to the
original program by popping the top of the stack back into PC.

p t
00H 000
08H 001
10H 010
18H 011
20H 100
28H 101
30H 110
38H 111

M cycles: 3 T states: 11(5,3,3) 4 MHz E.T.: 2.75

285

MODEL 111/4 ALDS

Example:

If the contents of the Program Counter are 15B3H, after the execution of
RST 18H (Object code 11011111)
the PC will contain 0018H, as the address of the next opcode to be fetched, and
the top number on the stack will be 15B3H.

286

INPUT AND OUTPUT GROUP

Input and Output Group

IN A,(n) INput

Operation: A ¢ (n)

Format:

Mnemonic: IN Operands: A, (n)

Object Code:

DB

Description:

The number of the input port is n. Data is input to register A. The operand n is
placed on the bottom half (A0 through A 7) of the address bus to select the 1/0
device at one of 256 possible ports. The contents of the Accumulator also appear
on the top half (A8 through A15) of the address bus at this time. Then one byte
from the selected port is placed on the data bus and written into the Accumulator
(register A) in the CPU.

M cycles: 3 T states: 11(4,3,4) 4 MHz E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H and the byte 7BH is available at the
peripheral device mapped to 1/0 port address 01H, then after the execution of

IN A,(01H)

the Accumulator will contain 7BH.

287

MODEL 111/4 ALDS

IN r,(C)
Operation: r ¢ (C)

Format:

Mnemonic: IN Operands: r, (C)

Object Code:

11 >>>>>:0>I
I O : I : r : r : r : 0 : 0 : 0 I

Description:

INput

ED

Register C contains the number of the input port. Data is input to register r.
The contents of register C are placed on the bottom half (A0 through A 7) of the
address bus to select the I/O device at one of 256 possible ports. The contents of
Register Bare placed on the top half (A8 through A15) of the address bus at this
time. Then one byte from the selected port is placed on the data bus and written
into register r in the CPU. Register r identifies any of the CPU registers shown in
the following table, which also shows the corresponding three-bit "r" field for
each. The flags will be affected, checking the input data.

Register r

B 000
C 001
D 010
E 011
H 100
L 101
A 111

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T.: 3.00

Condition Bits Affected:

S: Set if input data is negative; reset otherwise
Z: Set if input data is zero; reset otherwise
H: Reset
P/V: Set if parity is even; reset otherwise
N: Reset
C: Not affected

288

INPUT AND OUTPUT GROUP

Example:

If the contents of register Care 07H, the contents of register Bare 10H, and the
byte 7BH is available at the peripheral device mapped to 1/0 port address 07H,
then the execution of

IN D,(C)

re1'!:1stc~r D will contain 7BH

A typical use of the IN r, (C) instruction is for polled I/0. The following program
continually polls or inputs data from port FF until a non-zero number appears.
The program then reads in data from port FE. In this application, port FF is used
as a data ready signal for port FE.

LOOP

INI

LD
IN
JR
IN

C, 0FFH
B, (C)
Z,LOOP
A, (0FEH)

; C points at port FF
; input port FF to register B
; continue polling until not zero
; input port FE to register A

INput & Increment

Operation: (HL) ¢ (C), B ¢ 8-1, HL ¢ HL + 1

Format:

Mnemonic: INI Operands:

Object Code:

I I :i: i:o: < i:o: I I
1i:o:i:o:o:o:i: 0 1
Description:

ED

A2

Register C contains the number of the input port. Data input is placed in memory
at the address pointed at by HL. The contents of register C are placed on the
bottom half (A0 through A 7) of the address bus to select the 1/0 device at one of
256 possible ports. Register B may be used as a byte counter, and its contents are
placed on the top half (A8 through A15) of the address bus at this time. Then one
byte from the selected port is placed on the data bus and written to the CPU. The
contents of the HL register pair are then placed on the address bus and the input
byte is written into the corresponding location of memory. Finally the byte
counter is decremented and register pair HL is incremented.

M 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

289

MODEL 111/4 ALDS

Condition Bits Affected:

S: Unknown
Z: Set if B - 1 = 0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register Care 07H, the contents of register Bare 10H, the
contents of the HL register pair are 1000H, and the byte 7BH is available at the
peripheral device mapped to 1/0 port address 07H, then after the execution of

INI

memory location 1000H will contain 7BH, the HL register pair will contain
1001H, and register B will contain 0FH.

The following program will input data from input ports 1 through 80 and place
the data into a buffer in memory.

LD
LD
LD

LOOP INC

INIR

INI
JP

B, 80
C,O
HL, BUFF
C

NZ,LOOP

INput Increment & Repeat

Operation: (HL) ¢ (C), B ¢ 8-1, HL ¢ HL + 1

Format:

Mnemonic: INIR Operands:

Object Code:

1i:i:i:o:i:i;o:11 ED

1i:o:i:i:o:O:i:01 B2

290

INPUT AND OUTPUT GROUP

Description:

Register C contains the number of the input port. The data input is placed in
memory at the address pointed at by the HL register pair. The contents of register
C are placed on the bottom half (A0 through A 7) of the address bus to select the
1/0 device at one of 256 possible ports. Register B is used as a byte counter, and
its contents are placed on the top half (A8 through A15) of the address bus at this
time. Then one byte from the selected port is placed on the data bus and written
to the CPU. The contents of the HL register pair are placed on the address bus
and the input byte is written into the corresponding location of memory. Then
register pair HL is incremented, the byte counter is decremented. If
decrementing causes B to go to zero, the instruction is terminated. If B is not
zero, the PC is decremented by two and the instruction repeated. Note that if Bis
set to zero prior to instruction execution, 256 bytes of data will be input. Also
interrupts will be recognized after each data transfer.

If B =I= 0:

M cycles: 5

If B =0:

M cycles: 4

T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and the following sequence of bytes
are available at the peripheral device mapped to 1/0 port of address 07H:

51H
A9H
03H

then after the execution of

INIR

the HL register pair will contain 1003H, register B will contain zero, and
memory locations will have contents as follows:

Location Contents

1000H 51H
1001H A9H
1002H 03H

291

MODEL 111/4 ALDS

Here is a program to input 80 bytes from 1/0 port number FF and put them into
an 80-byte buffer starting at address BUFF.

LD
LD
LD
IN IR

HL, BUFF
B, 80
C,OFFH

; HL points at first byte of buffer
; load byte counter
; port FF
; input 80 bytes

Note: this assumes that the input port can be synchronized with the input
instructions.

IND
Operation: (HL) ¢ (C), B ¢ 8-1, HL ¢ HL-1

Format:

Mnemonic: IND Operands:

Object Code:

l<<<<<<0:1/ ED

l<O: :o:i:u:i:01 AA

Description:

INput & Decrement

The contents of register C are placed on the bottom half (A0 through A 7) of the
address bus to select the 1/0 device at one of 256 possible ports. Register B may
be used as a byte counter, and its contents are placed on the top half (A8 through
Al5) of the address bus at this time. Then one byte from the selected port is
placed on the data bus and written to the CPU. The contents of the HL register
pair are placed on the address bus and the input byte is written into the
corresponding location of memory. Finally the byte counter and register pair HL
are decremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B - 1 0: reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

292

INPUT AND OUTPUT GROUP

Example:

If the contents of register Care 07H, the contents of register Bare 10H, the
contents of the HL register pair are 1000H, and the byte 7BH is available at the
peripheral device mapped to l/0 port address 07H, then after the execution of

IND

memory location 1000H will contain 7BH, the HL register pair will contain
0FFFH, and register B will contain 0FH.

INDR INput Decrement & Repeat

Operation: (HL) ¢ (C), B ¢ 8-1, HL ¢HL-1

Format:

Mnemonic: INDR Operands:

Object Code:

11 >>>>>>>1
11 :0>>>>>>I
Description:

ED

BA

The contents of register C are placed on the bottom half (A0 through A 7) of the
address bus to select the l/0 device at one of 256 possible ports. Register B is
used as a byte counter, and its contents are placed on the top half (AS through
Al5) of the address bus at this time. Then one byte from the selected port
is placed on the data bus and written to the CPU. The contents of the HL
register pair are placed on the address bus and the input byte is written into
the corresponding location of memory. Then HL and the byte counter
are decremented. If decrementing causes B to go to zero, the instruction is
terminated. If B is not zero, the PC is decremented by two and the instruction
repeated. Note that if B is set to zero prior to instruction execution, 256 bytes of
data will be input. Also interrupts will be recognized after each data transfer.

If B 4:0:

M cycles: 5

IfB=0:

M cycles: 4

T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

293

MODEL 111/4 ALDS

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register Care 07H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and the following sequence of bytes
are available at the peripheral device mapped to 1/0 port address 07H:

51H
A9H
03H

then after the execution of

INDR

the HL register pair will contain 0FFDH, register B will contain zero, and
memory locations will have contents as follows:

Location Contents

0FFEH 03H
0FFFH A9H
1000H 51H

OUT (n),A
Operation: (n) ¢ A

Format:

Mnemonic: OUT Operands: (n), A

Object Code:

li'.i'.o'.<0: 0 >>1

ln:n:n:n:n:n:n:nl

294

OUTput

D3

INPUT AND OUTPUT GROUP

Description:

The operand n is placed on the bottom half (A0 through A 7) of the address
bus to select the I/0 device at one of 256 possible ports. The contents of the
Accumulator (register A) also appear on the top half (A8 through A15) of the
address bus at this time. Then the byte contained in the Accumulator is placed on
the data bus and written into the selected peripheral device.

M cycles: 3 T states: 11(4,3,4) 4 MHz E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H, then after the execution of

OUT 01H,A

the byte 23H will have been written to the peripheral device mapped to l/0 port
address 01 H.

OUT (C),r OUTput

Operation: (C) ¢ r

Format:

Mnemonic: OUT Operands: (C), r

Object Code:

l<<<<<<0:11 ED

lo:<<<<O:o'.rl
Description:

The contents of register C are placed on the bottom half (A0 through A 7) of the
address bus to select the l/0 device at one of 256 possible ports. The contents of
Register B are placed on the top half (A8 through A 15) of the address bus at this
time. Then the byte contained in register r is placed on the data bus and written
into the selected peripheral device. Register r identifies any of the CPU registers
shown in the following table, which also shows the corresponding three-bit "r"
field for each which appears in the assembled object code:

295

MODEL 111/4 ALDS

Register r
B 000
C 001
D 010
E 011
H 100
L 101
A 111

M cycles: 3 T states: 12(4,4,4)

Condition Bits Affected: None

Example:

4 MHz E.T.: 3.00

If the contents of register Care 01H and the contents of register Dare 5AH, after
the execution of

OUT (C),D

the byte 5AH will have been written to the peripheral device mapped to 1/0 port
address 01 H.

OUTI OUTput & Increment

Operation: (C) ¢ (HL), B ¢ 8-1, HL ¢ HL + 1

Format:

Mnemonic: OUTI Operands:

Object Code:

l<<<<<< 0 >I
1i:o;i;o;o;a:i: 1 1
Description:

ED

A3

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A0 through A 7) of the address bus
to select the 1/0 device at one of 256 possible ports. Register B may be used as

byte counter, and its decremented value is placed on the top half (A8 through

296

INPUT AND OUTPUT GROUP

A15) of the address bus. The byte to be output is placed on the data bus and
written into selected peripheral device. Finally the register pair HL is
incremented.

M 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B - 1 = 0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register Care 07H, the contents of register Bare 10H, the
contents of the HL register pair are 1000H, and the contents of memory address
1000H are 59H, then after the execution of

OUT!

register B will contain 0FH, the HL register pair will contain 1001H, and the
byte 59H will have been written to the peripheral device mapped to l/0 port
address 07H.

OTIR OuTput Increment & Repeat

Operation: (C) ¢ (HL), B ¢ 8-1, HL ¢ HL + 1

Format:

Mnemonic: OTIR Operands:

Object Code:

1i:i:i:a:i:i:a:11 ED

I 1 :0 :i > :0 :0 :i > I B3

Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A0 through A 7) of the address bus

297

MODEL 111/4 ALDS

to select the l/0 device at one of 256 possible ports. Register B may be used as a
byte counter, and its decremented value is placed on the top half (A8 through
A15) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Then register pair HL
is incremented. If the decremented B register is not zero, the Program Counter
(PC) is decremented by two and the instruction is repeated. If B has gone to zero,
the instruction is terminated. Note that if Bis set to zero prior to instruction
execution, the instruction will output 256 bytes of data. Also, interrupts will be
recognized after each data transfer.

If B :i=0:

M cycles: 5

IfB=0:

M cycles: 4

T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents of register Care 07H, the contents of register Bare 03H, the
contents of the HL register pair are 1000H, and memory locations have the
following contents:

Location Contents

1000H 51H
1001H A9H
1002H 03H

then after the execution of

OTIR

the HL register pair will contain 1003H, register B will contain zero, and a group
of bytes will have been written to the peripheral device mapped to l/0 port
address 07H in the following sequence:

51H
A9H
03H

298

INPUT AND OUTPUT GROUP

OUTD OUTput & Decrement

Operation: (C) ¢ (HL), B ¢ 8-1, HL ¢ HL-1

Format:

Mnemonic: 0UTD Operands:

Object Code:

l<<<<<<0:11 ED

l1:0:i:o:i:o:i:i1 AB

Description:

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, after the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A0 through A 7) of the address bus to
select the 1/0 device at one of 256 possible ports. Register B may be used as a
byte counter, and its decremented value is placed on the top half (A8 through
A15) of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Finally the register pair
HL is incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B - 1 = 0; reset otherwise
H: Unknown
P/V: Unknown
N: Set
C: Not affected

Example:

If the contents ofregister C are 07H, the contents of register B are 10H, the
contents of the HL register pair are 1000H, and the contents of memory location
1000H are 59H, after the execution of

0UTD

register B will contain 0FH, the HL register pair will contain 0FFFH, and the
byte 59H will have been written to the peripheral device mapped to 1/0 port
address 07H.

299

MODEL 111/4 ALDS

OTDR OUTput Decrement & Repeat

Operation: (C) ¢ (HL), B ¢ B 1, HL ¢ HL-1

Format:

Mnemonic: OTDR Operands:

Object Code:

l<i'.i'.O:i'.i'.0: 1 1
1i:o:1:1;i;o:i:i1
Description:

ED

BB

The contents of the HL register pair are placed on the address bus to select a
location in memory. The byte contained in this memory location is temporarily
stored in the CPU. Then, the byte counter (B) is decremented, the contents
of register C are placed on the bottom half (A0 through A 7) of the address bus to
select the I/O device at one of 256 possible ports. Register B may be used as a
byte counter, and its decremented value is placed on the top half (A8 through

of the address bus at this time. Next the byte to be output is placed on the
data bus and written into the selected peripheral device. Then register pair HL is
decremented and if the decremented B register is not zero, the Program Counter
(PC) is decremented by 2 and the instruction is repeated. If B has gone to zero,
the instruction is terminated. Note that if Bis set to zero prior to instruction
execution, the instruction will output 256 byte of data. Also, interrupts will be
recognized after each data transfer.

If B 4:0:

M 5 T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

IfB 0:

M 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set
H: Unknown
P/V: Unknown
N: Set

Not affected

300

INPUT AND OUTPUT GROUP

Example:

If the contents of register C are 07H, the contents of register B are 03H, the
contents of the HL register pair are 1000H, and memory locations have the
following contents:

Location Contents
0FFEH 51H
0FFFH A9H
1000H 03H

then after the execution of
OTDR
the HL register pair will contain 0FFDH, register B will contain zero, and a
group of bytes will have been written to the peripheral device mapped to l/0 port
address 07H in the following sequence:

03H
A9H
51H

301

EXTENDED ZSO INSTRUCTIONS

Chapter 10

Extended ZSO Instructions
The ALDS Assembler contains a number of extended Z80 instructions. You can
use them the same way you use other Z80 instructions.

An extended instruction is actually an internally defined macro. When you
assemble the instruction, the Assembler expands it into a group of Z80
instructions. A description of macros is in Chapter 8.

Notations
In addition to the notations described in Chapter 9, this chapter uses:

xx a register pair
yy a register pair
[] optional value

Format Of Each Instruction
This chapter uses the same format for the instructions as Chapter 9, with the
following exceptions:

• many of the instruction formats show different combinations of operands.
These combinations are listed under ''Operands''

• following the description of each instruction is a breakdown of how the
instruction expands when assembled

• the operation is not shown

• the object code is not shown

CPR operand ComPare double Register

Mnemonic: CPR Operands: xx (wherexx=BC, DE, HL, or SP)

Description:

Compares the contents of the operand to the contents of HL. If they compare, the
Z bit is set.

303

MODEL 111/4 ALDS

Example:

If re~:isu~r pair BC contains an A0H and HL contains an A0H.

CPR BC

sets Z bit.

Expansion: CPR xx

PUSH HL
OR A
SBC HL,xx
POP HL

CMPD operand1,operand2,[length]

Mnemonic: CMPD

Description:

CoMPare with Decrement

Operands: nnl, nn2 ,n

nnl,nn2

nnl,nn2,(nn3)

nnl,(nn2)

length is n.

length is contents of BC.

length is contents of
nn3.

length is last byte of
the string beginning at
operand2.

Compares the string beginning at operandi and ending at (operandi - length)
with the string beginning at operand2, and ending at (operand2 - length). The Z
bit is set according to the result of the comparison. Zero length strings are equal.

If a mismatch occurs, HL and DE will contain the addresses preceeding that
mismatch.

Example:

If memory location 4000-4006 contains the stringl ''develop'' and location 5000-
5006 contains the string2 "envelop': the operation

CMPD 4006H,5006H,7

starts the comparison of the two strings with the last byte, in this case the 'p ~ A
mismatch occurs at the second letter. Because of this mismatch, the address of
the preceding 'n' is now in register HL and the address of the preceding 'e' in
register DE.

304

EXTENDED zao INSTRUCTIONS

Exit Conditions:

All registers modified

Expansion: CMPD nnl,nn2,n

LD DE,nnl
LO HL,nn2
LO BC,n

V?a ,, LD A,B
OR C
JR z ,>a
LD At <DE)
CP <HU
JR NZ,;-{ 1
LOO
JR \l'i

t\L.

}{ 1 :

Expansion: CMPD nnl,nn2

LO OE,nnl
LD HL,nn2

}{2: LO A,B
OR C
JR Z,X1
LO At <DE)
CP (HU
JR NZ,>(1
LDD
JR)<2

>a:

Expansion: CMPD nnl, nn2, (nn3)

LO DE,nnl
LD HL,nn2
LD A(nn3)
LD C,A
LD B,0

}{2: LD A,B
OR C
JR Z,}0
LO A<DE)
CP <HU
JR NZ,X1
LDD
JR xz

}~{ 1 :

305

MODEL 111/4 ALDS

Expansion: CMPD nnl ,(nn2)

X2:

X1:

LD DE,nn1
LD HL1nn2
LD C, CHU
LD 610
INC
LD
OR
JR
LD
CP
JR
LDD
JR

HL
A,B
C
Z, 1
A(DE)
(HU
NZ ,}<1

X2

Note: The symbols used in the expansion are shown for clarity and are not
actually defined for use by other statements.

CMPI operand1,operand2,length

Mnemonic: CMPI

Description:

CoMPare with Increment

Operands: nnl, nn2, n

nnl,nn2

nnl, nn2 (nn3)

nnl,(nn2)

length is specified.
length in BC.

length is contents of nn3.

length is first byte of nn2.

Compares the string beginning at operandi with the string beginning at
operand2 for the given length. Depending on the operands, length can be
specified as a constant, the contents of an address, or the contents of the BC
register. If a match does not occur, HL and DE will contain the addresses
following that mismatch. The Z bit is set according to the result of the
comparison. Zero length strings are equal.

Example:

If memory location 4000-4006 contains the stringl ''develop'' and location 5000-
5006 contained the string2 "envelop":

CMPI 4000H,5000H,7

starts the comparison of the two strings beginning with the first byte (in this case,
the 'd' in stringl and the 'e' in string2). A mismatch occurs at the first letter. The
address of 'd' is now in register DE and the address of 'e' is now in register HL
where the comparison failed.

306

EXTENDED ZSO INSTRUCTIONS

Exit Conditions:

All registers modified

Expansion: CMPI nnl ,nn2 ,n

LO 0Etnn1
LO HLtnn2
LO BC tn

}{2: LO AtB
OR C
JR Z t>{ 1
LO A(OE)
CP (HU
JR NZ ,}<1
LOI
JR }{2

}{ 1 :

Expansion: CMPI nnl, nn2

LO 0Etnn1
LO HLtnn2

}-(2: LO A,B
OR C
JR Z t}{ 1
LO A tCOE)
CP <HU
JR NZ t}< 1
LOI
JR X2

X1:

Expansion: CMPI nnl, nn2, (nn3)

LO 0Etnn1
LO HLtnn2
LO At (nn3)
LO C,A
LO B,0

X2: LO A,B
OR C
JR ZtX1
LO A t<OE)
CP (HU
JR NZt}{1
LOI
JR \I,-,

1\.:...

X1:

307

MODEL 111/4 ALDS

Expansion: CMPI nnl

LO DE ,nrd
LO HL,
LO C ,<HU
LO 8,0
INC HL

XZ: LO A,B
OR C
JR Z ,}{ 1
LD A dDE)
CP <HU
JR NZ , }{1

LOI
JR X2

X1:

Note: The labels used in the expansion are shown for clarity and are not actually
defined for use by other statements.

Tl operand Test register for Zero

Mnemonic: TZ Operands: xx (wherexx=BC, DE, HL, IX, or IY)

Description:

Compares the contents of xx to zero. If true, the Z bit is set.

Example:

If the contents of BC contains a 00H then the operation

TZ BC

sets the Z bit. Any other value (i.e. A0H) sets the NZ bit.

l Note: TZ IX and TZ IY are instructions which are not documented by l
l ZILOG. Although they should assemble properly, Radio Shack does not l
l guarantee that they will work on all processors. You should test them in l
: your own environment to ensure their validity. :
* * ***

Expansion: TZ xx

LO A,high order b te of xx
OR low order b te of xx

308

EXTENDED Z80 INSTRUCTIONS

EX operand

Mnemonic: EX Operands: (SP),xx

Description:

EXchange double register
with (SP)

where xx= AF, BC, or DE

Exchanges the low order byte contained in xx with the contents of the memory
address specified by the contents of the stack pointer (SP). The high order byte of
xx is exchanged with the next highest memory address (SP+ 1).

Example:

If the contents of the register pair BC is 3978H and the stack pointer (SP) and its
next byte (SP+ 1) contains 2357H:

EX (SP) ,BC

causes the register pair BC to contain 2357H and the top address of the stack to
contain 4978H.

Expansion: EX (SP) ,xx where xx= AF or BC

E>{ (SP) ,HL
PUSH xx
PUSH HL
POP xx
POP HL
EX <SP) ,HL

Expansion: EX (SP),DE

EX DE,HL
EX CSP),HL
EX DE,HL

EX operand1,operand2

Mnemonic: EX Operands: xx,yy

Description:

EXchange double register

where xx and yy are any register pairs
listed under "Expansion" below.

Exchanges the two-byte contents of xx with the contents of yy.

309

MODEL 111/4 ALDS

Example:

The contents of BC is 6789H and the contents of DE is 1234H. After the
execution of:

EX BC,DE

the values are exchanged so that BC contains 1234H and DE contains 6789H.

Expansion: EX AF,BC
EXAF,DE
EXBC,DE

PUSH 1st Operand
PUSH 2nd Operand
POP 1st Operand
POP 2nd Operand

Expansion: EXxx,yy (xx= AF, BC or DE
yy=IX or IY)

PUSH 1st 0Perand
EX (SP) ,2nd 0Perand
POP 1st Operand

Expansion: EX HL,xx (xx= IX or IY)
EX IX,IY
EXxx,HL, (xx=AForBC)

PUSH 1st Operand
EX <SP) ,2nd Ope rand
POP 1st 0Perand

Expansion: EX (SP), xx (xx=AF, BC)

E}< (SP) , HL
PUSH 2nd Operand
PUSH HL
POP 2nd 0Perand
EX (SP) , HL

Expansion: EX (SP), DE

EX (SP), HL
E>{ DE, HL
EX (SP), HL

LD operand1,operand2
Mnemonic: LD

310

Operands: xx,yy
(xx),yy
xx,(yy)
(xx),(yy)

LoaD

EXTENDED zao INSTRUCTIONS

Description:

Loads the first operand with the second operand. The numbers shown in the
tables (1-14) represent the coded expansions for the pair of operands. Details of
each expansion follow the tables (i.e. BC,AF to expansion description #1).

Example:

The operation:

LO HLtOE

copies the contents of DE to HL.

First Second Operand

Operand BC DE HL (BC) (DE) (HL) (IX+DD) (IY+DD)

(BC) 4 4 6 - 9 9 9 9

(DE) 4 4 7 9 - 9 9 9

(HL) 5 5 8 9 9 9 9 9

(IX+DD) 5 5 5 9 9 9 - 9

(IY+DD) 5 5 5 9 9 9 9 -

First Second Operand
Operand AF BC DE HL IX IV A

AF 1 1 1 1 1 1 -

BC 1 3 3 3 1 1 2

DE 1 3 3 3 1 1 2

HL 1 3 3 3 1 1 2

IX 1 1 1 1 1 1 2

IV 1 1 1 1 1 1 2

First Second Operand
Operand (BC) (DE) (HL) (IX+DD) (IY+DD)

BC 11 12 10 10 10

DE 12 11 10 10 10

HL 13 13 14 10 10

(-) indicates operand pairs not applicable

311

MODEL 111/4 ALDS

(1) Expansion: LD xx,yy where xx and yy are any of the following operand
pairs:

PUSH 2nd Operand
POP 1st 0Perand

AF,AF ; AF,BC
; AF tIY

BC,AF BC tIX
DE,AF DE, IX
HL,AF HL tIX
IX,AF IX,BC

; IX tIY
IY,AF ; IY,BC

; I Y, I Y

AF,DE ; AF,HL ; AFd

BC, IY
DE tI
HL, IY
D< ,DE I}{ ,HL I t!}{

IY,DE IY,HL IY tIH

(2) Expansion: LD xx,yy where xx and yy are any of the following operand
pairs:

BC,A ; DE,A ; HL,A ; IX,A ; IY,A

LO Low order byte of refister Pair,A (accuMulator)
LO Hifh order bYte of refister Pair,0

Note: LD IX,A and LD IY,A are instructions which are not documented :
f by ZILOG. Although they should assemble properly, Radio Shack does #
not guarantee that they will work on all processors. You should test them :
: in your own environment to ensure their validity. :

(3) Expansion: LD xx,yy where xx and yy are any of the following operand
pairs:

BC,BC
DE,BC
HL,BC

BC,DE
DE,DE
HL,DE

BC,HL
DE,HL
HL,HL

LO Hifh order bYte 1st 0Perand, Hifh order bYte 2nd
Operand

LO Low order byte 1st Operand, Low order bYte 2nd
0Perand

(4) Expansion: LD xx,yy where xx and yy are any of the following operand
pairs:

312

PUSH 1st Operand
EX (SP) ,HL

CBC) ,BC
(DE) ,BC

(BC) ,DE
<DE) ,DE

LO (HU ,Loi,.1 order bYte 2nd Operand
INC HL

EXTENDED ZSO INSTRUCTIONS

LO (HU ,Hi!th order bYte 2nd 0Perand
EX (SP) ,HL
POP 1st Operand

(5) Expansion: LD xx,yy where xx and yy are any of the following operand
pairs:

<HU ,BC ; CHU ,OE
(IX+OO),BC; (IX+OO),OE; <IX+OO>,HL
(IY+OO) ,BC ; (IY+D0) ,OE ; (IY+OO> ,HL

LO (1st Operand) ,Low order b>'te 2nd Operand
INC Re!fister of 1st operand
LD (1st Operand) ,Hi!th order b>'te 2nd Operand

Side Effect: first operand register is incremented by 1.

(6) Expansion: LD (BC),HL

PUSH AF
LO A,L
LO (BC> ,A
INC BC
LO A,H
LO <BC) ,A
POP AF

Side Effect: Register BC is incremented by 1.

(7) Expansion: LD (DE) ,HL

PUSH AF
LO A,L
LO <DE) ,A
INC DE
LO A,H
LO <DE) ,A
POP AF

Side Effect: Register DE is incremented by 1.

(8) Expansion: LD (HL),HL

PUSH AF
LO A,H
LO (HU ,L
INC HL
LD <HU ,A
POP AF

Side Effect: Register HL is incremented by 1.

313

MODEL 111/4 ALDS

(9) Expansion: LD xx,yy where xx and yy are any of the following operand
pairs:

<BC) dDE> ; <BC) t<HU
; (BC) d IY+DD)

<DE) , (BC) ; <DE) , (HU
; <BC>,<IY+DD)

(HU dBC) ; (HU ,<DE>
; (HU tC IY+DD>

(BC),< IX+DD>

(OE) tC I}<+DD)

<HU d IX+DD>

< IX+DD) dBC) ; (IX+DD) ,<DE> ;
< I}{+OD > d HU ;c I}{+OD) ,< IY+DD >

(IY+DD) dBC) ; (IY+DD) dDE) ;
(IY+DD) dHU; (IY+DD) ,< IX+DD>

LO A,(2nd Operand)
LO (1st Operand) ,A

Side Effect: Register A is changed.

(10) Expansion: LD xx,yy where xx and yy are any of the following operand
pairs:

BC,<HL> ; BC,<IX+DD> ; BC,<IY+DD)
DE,<HL) ; DE,(IX+DD) ; DE,<IY+DD>
HL,<IX+DD) ; HL,<IY+DD>

LO Low order bYte 1st 0Perand,(2nd Operand)
INC Contents of 2nd Operand, refister
LO Hifh order bYte 1st 0Perand,C2nd Operand)

Side Effect: 2nd operand Register is incremented (HL,IX or IY)

(11) Expansion: LD xx, (yy) where xx and (yy) are either of the following
operand pairs:

BC,(BC) ; DE,<DE)

PUSH Contents of 2nd Operand
EX (SP),HL
LO Low order bYte of 1st 0Perand,(HL)
INC HL
LO Hifh order byte of 1st 0Perand,(HL)
POP HL

(12) Expansion: LD xx,(yy) where xx and (yy) are either of the following
operand pairs:

BC,(OE) ; DE,(BC)

PUSH Contents of 2nd Operand
EX (SP),HL
LO Low order bYte of 1st 0Perand,CHL>

314

EXTENDED zao INSTRUCTIONS

INC HL
LO Hi~h order bYte of 1st OPerand,(HL)
EX (SP) ,HL
POP Contents of 2nd OPerand

Side Effect: 2nd operand register is incremented by 1.

(13) Expansion: LD xx,(yy) where xx and (yy) are either of the following
operand pairs:

HL,<BC) ; HL,<OE)

PUSH AF
LO A tC2nd OPerand)
LO L,A
INC Contents of 2nd OPerand
LO A , (2nd OPerand)
LO H,A
POP AF

Side Effect: 2nd operand Register is incremented by 1.

(14) Expansion: LD HL,(HL)

PUSH AF
LO A ,<HU
INC HL
LO H dHU
LO L,A
POP AF

MOVD operand1,operand2,length

Mnemonic: MOVD

Description:

Operands: nnl, nn2, n

nnl,nn2

nnl, nn2, (nn3)

nnl,(nn2)

MOVe with Decrement

length is specified.

length is in BC.

length is contents of
nn3 (byte).

length is first byte
of nn2.

Moves a string of a given length (implied in the operand) from the address of
operand2 to the address of operandi. MOYD starts at the end of the string and
moves backward starting at the address of operand2.

You can specify the length as a constant, the contents of an address, or the
contents of the BC register.

315

MODEL 111/4 ALDS

Example:

If the address 4000 contained the string ''develop'':

MOVD 5000H,4000Ht7

moves "develop" from address 3FFA-4000 to 4FFA-5000 starting with the end
of the string, (i.e. 'p') which would be located at address 5000H.

Expansion: MOYD nnl,nn2,n

LO OE,nn1
LO HLtnnZ
LO 6C,n
LODR

Expansion: MOYD nnl,nn2

LO OE,nn1
LO HL,nnZ
LO A,6
OR C
JR Z,}0
LOOR

X1:

Expansion: MOVD nnl,nn2,(nn3)

LO OE,nn1
LO HL,nnZ
LO A,(nr,3)
LO C,A
LO 6,0
OR A
JR Z,X1
LOOR

X1:

Expansion: MOYD nnl, (nn2)

LO OE,nn1
LO HL,nnZ
LO CdHU
LO 6,0
INC HL
LO A,6
OR C
JR Z,X1
LOOR

X1:

316

EXTENDED ZSO INSTRUCTIONS

MOVI operand1,operand2,length

Mnemonic: MOVI

Description:

Operands: nnl, nn2, n

nnl,nn2
nnl,nn2,(nn3)

nnl,(nn2)

MOVe with Increment

length is specified.

length is in BC.

length is contents of nn3.

length is first byte of nn2.

Moves a string of the given length from the address of operand2 to the address of
operandi. MOVI starts at the beginning of the string and moves forward.

You can specify the length as a constant, the contents of a memory address, or
the contents of the BC register.

Example:

If location 4001H contains the string ''develop': the instruction:

MOVI 5000H,4000H,7

moves "develop" from address 4001H to 5000H starting with d, the first letter.

Expansion: MOVI nnl,nn2,n

LO OEnn1
LO HLnn2
LO BC,n
LOIR

Expansion: MOVI nnl,nn2

LO OE,nn1
LO HL,nn2
LO A,B
OR C
JR Z,X1
LOIR

X1:

Expansion: MOVI nnl,nn2,(nn3)

LO OE,nn1
LO HL,nn2
LO A,nr,3
LO C,A
LO B,0
OR A
JR Z ,}<1
LOIR

X1:

317

MODEL 111/4 ALDS

Expansion: MOVI nnl,(nn2)

LO OE,nnJ
LO HL,nnZ
LO C tCHU
LO B,0
INC HL
LO A,B
OR C
JR Z,X1
LOIR

Xi:

POP
Mnemonic: POP Operands: none

Description:

Increments the stack pointer one full word.

Example:

If the stack pointer contains the byte 39H on top and 45H in the next location

POP

increments the stack pointer past these two bytes to the next point.

Expansion:

INC SP
INC SP

RS I R operand
Mnemonic: RSTR Operands: n where n =

318

ReSToRe

none restores HL,DE
BC

4 restores HL,DE
BC and AF

I restores HL,DE
BC,AF,IX,IY

P restores HL,DE
BC,AF,IX,IY,H~
DE:BC'

A restores HL,DE
BC,AF,IX,IY,H~
DE,BC:AF'

EXTENDED ZSO INSTRUCTIONS

Description:

Restores the registers specified by the operand after a SAVE (see extended
instruction). This is often used after a return from a subroutine.

Example:

If registers HL, DE, BC are saved (See SAVE),

RSTR

restores them to their original values.

Expansion: RSTR

POP HL
POP DE
POP BC

Expansion: RSTR 4

POP HL
POP DE
POP BC
POP AF

Expansion: RSTR I

POP HL
POP DE
POP BC
POP AF
POP IY
POP I>{

Expansion: RSTR P

POP HL
POP DE
POP BC
POP AF
POP IY
POP IX
EX}-{
POP HL
POP DE
POP BC
EX>(

Expansion: RSTR A

POP HL
POP DE
POP BC
POP AF
POP IY
POP IX

319

MODEL 111/4 ALDS

E){}(
POP HL
POP DE
POP BC
EXX
EX AF,AF'
POP AF
D(AF,AF'

SAVE operand
Mnemonic: SAVE Operands: n where n =

Description:

none saves HL,DE,BC
4 saves HL,DE,BC

AF
I saves HL,DE,BC,

AF,IX,IY
P saves HL,DE,BC

AF,IX,IY,H.C
DE:BC'

A saves HL,DE,BC,
AF,IX,IY,HI..:,
DE:BC:AF'

Copies the contents of the registers specified by thes38operand. This is useful
before executing a subroutine. The registers are restored with RSTR (see
extended instruction).

Example:

SAVE

saves the contents of registers HL, DE, BC, to free them for use, then executes a
SAVE.

Expansion: SAVE

PUSH BC
PUSH DE
PUSH HL

Expansion: SAVE 4

PUSH AF
PUSH BC
PUSH DE
PUSH HL

320

EXTENDED Z80 INSTRUCTIONS

Expansion: SAVE I

PUSH IX
PUSH IY
PUSH AF
PUSH BC
PUSH OE
PUSH HL

Expansion: SAVE P

EXX
PUSH BC
PUSH DE
PUSH HL
EX}<
PUSH IX
PUSH IY
PUSH AF
PUSH BC
PUSH OE
PUSH HL

Expansion: SAVE A

E>{ AF,AF'
PUSH AF
EX AF,AF'
EXX
PUSH BC
PUSH DE
PUSH HL
EXX
PUSH IX
PUSH IY
PUSH AF
PUSH BC
PUSH OE
PUSH HL

SVC operand Supervisory Call

Mnemonic: SVC Operands: n

Description:

Performs the supervisory call specified by n.

321

MODEL 111/4 ALDS

Expansion:

Model 4:

LO A ,n

RST 28H

Model III:

322

PUSH BC
PUSH DE
PUSH HL
CALL n
POP HL
POP OE
POP BC

C

a

ERRORS

ERROR MESSAGES

Section III
Error Messages

323

ERROR MESSAGES

Error Messages
Editor Error Messages

Bad File Format
The file is not a type ALEDIT can load, either fixed LRL 1 or Variable, and with
record length not greater than 256 bytes.

Bad Filename Format
The filename is too long or incorrectly formatted on a load or a write command.

Bad Parameters
The ASCII line number converted to hexadecimal is greater than 65535 decimal
(for line number request).

The change string is zero or the length of the line to be changed is zero (for
Change command).

Buffer Full
There is no more room in the edit buffer. Program returns from any mode back to
the command mode. Note that the edit buffer is about 4K smaller if DO, HOST,
COMM, SPOOL, DEBUG or ALBUG are on.

Line Length Too Long, lruncating Line
You are loading a file that has lines longer than 78 characters.

Line Number Too Large
The line number is larger than the last line number in the file.

The editor does not recognize your command. Re-type it.

No Text
The edit buffer is empty, the only commands which are effective are:

Kt Lt Y, It CJ, J, S

Occurrence Too Large
In the Find and Change commands the occurrence is greater than 255.

325

MODEL 111/4 ALDS

Search ARG Too Long
The string you want to search for is longer than 37 characters.

Syntax Error
The command is improperly specified.

Total Line Length Too Long
The new line created by a Change command is greater than the acceptable Line
Length.

If the Editor returns an error code, it is a TRSDOS error message. You can
identify it, by simply typing in the error number. For example, at TRSDOS
READY type:

ERROR 19 (ENTER)

or at the Editor command mode, type:

S ERROR 19 (ENTER)

and your computer answers you with the correct identification:

INVALID FILE NAME

You can do this any time your computer identifies an error which you are not
aware of.

Hit Any Key To Continue
If there is an error in the load or write routines, the Editor waits for the user to
read the entire error message.

326

ERROR MESSAGES

Assembler Error Codes
Code Meaning

A Arithmetic Overflow- result of a multiplication is outside
the range of - 65536 +65535

B Balance Error of Brackets

C Condition Error
ELSE outside an IF ... ENDIF pair
Unterminated IF
ENDIF without matching IF
Macro defined after a macro was expanded

D Macro Definition Error
ENDM outside a macro definition
Macro not terminated when END statement was reached.
Parameter substitution (i.e. "#9") specified in the body of

the macro for a parameter not listed in the heading.
Macro body too long.

E Missing END statement
Missing ENDM statement

F Include files nested too deeply

I Illegal character
Control character in source file.

L Maximum Line Length Exceeded. The limit is 254
characters a line

M Multiple Definition of a Symbol
This includes defining a symbol and declaring it EXTRN

0 Stack Overflow- expression too complicated

p Phase Error- Symbol appears or changes value after
Pass 1. This is often caused by using symbols in the
operand field of EQU, DEFS, or ORG before those
symbols are defined.

R Range Error in Relative Addressing.
Use a JP instead of JR, or rearrange code.

327

MODEL 111/4 ALDS

Code Meaning

s Syntax Error
Illegal operation code
Too few, too many, or the wrong type of operands
Use of an external symbol or relocatable expression

where it is not allowed
Use of an instruction generating object code within an

ISECT
Use of an instruction before a PSECT
Instruction illegal after a LINK directive

T Mixing of absolute and relocatable PSECTs

u Undefined Symbol

V Illegal Value
Value too large to fit in a single byte (- 256 - +255

permitted)
Illegal combination of relocatable or external symbols

w Reserved word used as a symbol. Do not use a register
name or branch condition as a symbol

328

ERROR MESSAGES

Linker Error Messages

Symbol Table Overflow
There are too many external symbols to fit in memory. Reduce the number of
symbols declared public or global by assembling several modules together, or
using shorter names.

Multiply Defined Entry Symbol
The indicated symbol has been defined more than once (and declared public and/
or global). The two or more definitions may be in the same object file (the
assembler will output an 'M' error) or in different files. Note that using the same
name for a public or global symbol in one file and for a local symbol (not
declared PUBLIC, GLOBAL or EXTRN) in another file is permitted.

Address Different from Pass 1
The indicated symbol changed values between Pass 1 and Pass 2. Normally this
error is preceeded by a "Multiply Defined Entry Symbol" message and the cause
is the same. This error may also be caused by changing disks in the middle of a
link, inserting a disk with a different version of the same object file in a lower
drive number during the link, or linking corrupted object files.

The two addresses are the values from Pass 1 and Pass 2 respectively. These
values and the PSECT map may be used to locate the modules containing the
definitions, assuming that the value falls within the code area of the module.

Undefined External Symbol
The indicated symbol is declared EXTRN in at least one module and is never
defined and declared PUBLIC or GLOBAL in any module included in the link.
This is usually caused by failing to declare a label PUBLIC, omitting files that
should have been included in the link, or linking incomplete programs to test just
the implemented parts. In the last case, if the instructions referring to the
undefined symbol are never used, the error may be ignored.

Missing External Transfer Address
The main program ends with NOEND, or the object file has been corrupted. The
main program should terminate with END and a transfer address.

IDegal Addressing
The load address being computed by the linker wraps around from FFFFH to
0000H. Reduce the size of your program or use a lower load address.

329

MODEL 111/4 ALDS

Invalid Parameter
The LINKs are nested too deeply; an illegal character was specified in a filename
on the command line, LINK, or GLINK instruction, the source filename is
missing, or errors were found in the $ = XXXX parameter.

330

ERROR MESSAGES

Linker TRSDOS Errors

File Not Found
Object file not found.

Note: Default extension is /REL.

Attempt to Use a Non-Program File As a Program
The file used is incomplete or in NOLOAD format, or is not an object file.

Open Attempt For a File Already Open
Another file, directly or indirectly, attempted to include itself with a LINK
directive.

Note: Default extension is /REL. Also, other errors may include: disk read/write
errors, password protection, illegal disk change, disk full etc.

331

APPENDICES

Appendix A/ Undocumented Z80 Instructions
*** ! Note: These instructions are not documented by ZILOG. Radio Shack !
: does not guarantee that they will work on all processors. You should test !
: them in your own environment to ensure their validity. :

APPENDIX

333

Shift/Load Instructions

: Note: These instructions are not documented by ZILOG. Radio Shack !
: does not guarantee that they will work on all processors. You should test !
them in your own environment to ensure their validity. :

In the following list, the undocumented instructions on the left perform the same
function as the corresponding instructions on the right, except that the memory
location data is shifted or rotated and stored in both the register and the memory
location.

RLCLD r,m RLC m
RLLD r,m RL m
RRCLD r,m RRC m
RRLLD r,m RRL m
SLALD r,m SLA m
SLOLD r,m SLO m
SRALD r,m SRA m
SRLLD r,m SRL m

r is one of the following registers: A,B,C,D,E,H, or L
m is one of the following: (IX+ d) or (IY + d)

The operation of the condition code bits and instruction timing is believed to be
the same as for the corresponding shift or rotate instruction.

Object Code:

1i:i:x:i:i:i:0:i]
l<<< 0 >>>>I
1d:d:d:d:d:d:d:d1

I 0 : 0 : n : n : n : r : r : r I
n = RLCLD 0 r = 111 A

RLLD 2 000B
RRCLD 1 001 C
RRLLP 3 010D
SLALD 4 011 E
SLOLD 6 100H
SRALD 5 101 L
SRLLD 7

DD for (IX+ d)
FD for (IY + d)

CB

APPENDIX

335

MODEL 111/4 ALDS

Bit Set/Load And Bit Reset/Load Instructions

l Note: These instructions are not documented by ZILOG. Radio Shack :
f does not guarantee that they will work on all processors. You should test :
: them in your own environment to ensure their validity. :

In the following list, the undocumented instructions on the left perform the same
function as the corresponding instructions on the right except that the resulting
data after the bit operation is loaded in both the memory location and the
register.

RESLD
SETLD

r,n,m
r,n,m

RES
SET

n,m
n,m

r is one of the following registers: A,B,C,D,E,H or L
n is a bit number with value between 0 and 7, inclusive
m is either (IX+ d) or (IY + d)

Object Code:

DD for (IX+ d)
FD for (IY + d)

CB

I x : x : n : n : n : r : r : r I

x = 10RESLD n
11 SETLD

336

bit number r = 111 A
000B
001 C
010D
011 E
100H
101 L

Index Register Half Instructions

Note: These instructions are not documented by ZILOG. Radio Shack !
! does not guarantee that they will work on all processors. You should test !
: them in your own environment to ensure their validity. :

The upper and lower bytes of the index registers IX and IY may be manipulated
individually. To use these instructions, the following register names are used:

XH High Byte of IX
XL Low Byte of IX
YH High Byte of IY
YL Low Byte of IY

The object code generated has a prefix byte of DD or FD (for the halves of the
IX or IY register) and otherwise is the same as the corresponding instructions
with the H or L register used in place of the high or low byte of an index
register.

The XH, XL, YH and YL registers may be used in the following instructions:

ADC A,XH LD r,XH
ADD A,XH LD XH,r
AND XH LD XH,n
CP XH OR XH
DEC XH SBC A,XH
INC XH SUB XH

XOR XH

r = A, B, C, D, orE

APPENDIX

337

MODEL 111/4 ALDS

Appendix B / ALDS Object Code Format
Each record is a variable number of bytes, packed consecutively in an LRL 256
file. Records may span sector boundaries. The file is terminated by a record
with an 02 or 03 header. For further information, see the Model III or Model 4
Owner's Manual.

Object Code:

HEADER
(1)

01

LENGTH
(1)

n+2

Absolute Entry*

I 02 I 02

Relocatable Entry*

I 02 I 03

Load-only*

I 03 I 02

External entry*

03 0D

Relocatable Object Data

I 04 I 03

External Object Data

04 0D

Load address
(2)

Absolute Entry
Point (2)

Relocatable Entry
Offset (2)

0 0 0 0
(2)

FLAGS
01000011

FLAGS
00001xxx

FLAGS
01001lxx

Object
(2)

Object
(2)

Object
(2)

*One of These Records Terminates Each Object File

338

Data bytes
(n)

External
Name (10)

External
Name (10)

Public Label w/Object

04 0F
FLAGS Public Label

100xlxxx Offset (2)

Object Public Label Name
(2) (10)

Public Label w/o Object

04 0F FLAGS Public Label
100x0011 Offset (2)

0 0 0 0 Public Label Name
(2) (10)

Public Label w/External

04 19 FLAGS Public Label
110xllxx Offset (2)

Object Public Label Offset External Name
(2)

LINK

09 n+l

GUNK

I 09 n+l

(2)

FLAGS
00100000

FLAGS
00110000

(10)

File Name (n)

File Name (n)

Numbers given under flags are in binary. X = varies depending on particular
situation.

FLAGS for 03, 04, 07 Records

0 = No public name is present (bit 4 = 0)
1 Public name is present

0 = External name is not present
1 External name is present (bits 3, 2, = 1, 1)

0 Reserved

APPENDIX

339

MODEL 111/4 ALDS

0 = Address of public label is relocatable or not present, or this is an
absolute file

l = Address of public label in a relocatable file is absolute.
(bit 7 = 1)

0 = No object present (bits, 1, 0 = 0, 1, 1)
1 = Object code is present

0 Object is absolute or not present
1 = Object is relocatable (bit 3 = 1)

00 = Illegal combination
01 = Use only MSB of result (bit 3 = 1)
10 = Use only LSB of result (bit 3 = 1)
11 = Use both LSB and MSB of result (if bit 3 = 1) or object not

present (if bit 3 = 0)

If object is absolute (bit 2 = 0) Result = object
If object is relocatable (bit 2 = 1)

Result = object + PSECTS origin (if bit 6 = 0)
or Result = object + External name value (if bit 6 = 1)

FLAGS for 05/06 Records

0 1 = File contains relocatable object

0 1 = file contains externals

0 = Reserved

0 1 = File contains public records

0 1 = File contains a link or gl ink file name

0 0 Reserved

[2J 0 Reserved

0 0 Reserved

340

APPENDIX

Appendix C / Numeric List of Instruction Set
Following is a listing of object codes in numerical order in column two followed by the nmemonic or source
statement in column four.

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0000 00 1 NOP 004F 3620 55 LD(HL),N
0001 018405 2 LDBC,NN 0051 37 56 SCF
0004 02 3 LD(BC),A 0052 382E 57 JR C,DIS
0005 03 4 INC BC 0054 39 58 ADDHL,SP
0006 04 5 INCB 0055 3A8405 59 LDA,(NN)
0007 05 6 DECB 0058 3B 60 DEC SP
0008 0620 7 LDB,N 0059 3C 61 INCA
OOOA 07 8 RLCA 005A 3D 62 DECA
000B 08 9 EXAF,AF' 005B 3E20 63 LDA,N
oooc 09 10 ADDHL,BC 005D 3F 64 CCF
000D 0A 11 LDA,(BC) 005E 40 65 LDB,B
OOOE OB 12 DEC BC 005F 41 66 LDB,C
OOOF oc 13 INCC 0060 42 67 LDB,D
0010 OD 14 DECC 0061 43 68 LDB,E
OOll 0E20 15 LDC,N 0062 44 69 LDB,H
0013 OF 16 RRCA 0063 45 70 LDB,L
0014 102E 17 DJNZDIS 0064 46 71 LD B,(HL)
0016 118405 18 LDDE,NN 0065 47 72 LDB,A
0019 12 19 LD(DE),A 0066 48 73 LDC,B
001A 13 20 INC DE 0067 49 74 LDC,C
001B 14 21 INCD 0068 4A 75 LDC,D
OOlC 15 22 DECD 0069 4B 76 LDC.E
001D 1620 23 LDD,N 006A 4C 77 LDC,H
OOlF 17 24 RLA 006B 4D 78 LDC,L
0020 182E 25 JR DIS 006C 4E 79 LDC,(HL)
0022 19 26 ADDHL,DE 006D 4F 80 LDC,A
0023 IA 27 LDA,(DE) 006E 50 81 LDD,B
0024 1B 28 DEC DE 006F 51 82 LDD,C
0025 IC 29 INCE 0070 52 83 LDD,D
0026 1D 30 DECE 0071 53 84 LDD,E
0027 1E20 31 LDE,N 0072 54 85 LDD,H
0029 IF 32 RRA 0073 55 86 LDD,L
002A 202E 33 JRNZ,DIS 0074 56 87 LDD,(HL)
002C 218405 34 LDHL,NN 0075 57 88 LDD,A
002F 228405 35 LD(NN),HL 0076 58 89 LDE.B
0032 23 36 INCHL 0077 59 90 LDE,C
0033 24 37 INCH 0078 5A 91 LDE,D
0034 25 38 DECH 0079 5B 92 LDE,E
0035 2620 39 LDH,N 007A 5C 93 LDE,H
0037 27 40 DAA 007B 5D 94 LDE.L
0038 282E 41 JRZ,DIS 007C 5E 95 LDE,(HL)
003A 29 42 ADDHL,HL 007D 5F 96 LDE,A
003B 2A8405 43 LDHL,(NN) 007E 60 97 LDH,B
003E 2B 44 DECHL 007F 61 98 LDH,C
003F 2C 45 INCL 0080 62 99 LDH,D
0040 2D 46 DECL 0081 63 100 LDH,E
0041 2E20 47 LDL,N 0082 64 101 LDH,H
0043 2F 48 CPL 0083 65 102 LDH,L
0044 302E 49 JRNC,DIS 0084 66 103 LDH,(HL)
0046 318405 50 LDSP,NN 0085 67 104 LDH,A
0049 328405 51 LD(NN),A 0086 68 105 LDL,B
004C 33 52 INC SP 0087 69 106 LDL,C
004D 34 53 INC(HL) 0088 6A 107 LDL,D
004E 35 54 DEC(HL) 0089 6B 108 LDL,E

341

MODEL 111/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
008A 6C 109 LDL,H OOC9 AB 172 XORE
008B 6D 110 LDL,L OOCA AC XOR
008C 6E 111 LDL,(HL) OOCB AD XORL
008D 6F 112 LDL,A oocc AE 175 XOR(HL)
008E 70 113 LD(HL),B OOCD AF 176 XOR
008F 71 114 LD(HL),C OOCE BO 177 ORB
0090 72 115 LD(HL),D OOCF Bl 178 ORC
0091 73 116 LD(HL),E 00DO B2 179 ORD
0092 74 117 LD(HL),H 00Dl B3 180 ORE
0093 75 118 LD(HL),L 0002 B4 181 ORH
0094 76 119 HALT 00D3 B5 182 ORL
0095 77 120 LD(HL),A 00D4 B6 183 OR(HL)
0096 78 121 LDA,B 00D5 B7 184 ORA
0097 79 122 LDA,C 00D6 B8 185 CPB
0098 7A 123 LDA,D 00D7 B9 186 CPC
0099 7B 124 LDA,E 00D8 BA 187 CPD
009A 7C 125 LDA,H 0009 BB 188 CPE
009B 7D 126 LDA,L OODA BC 189 CPH
009C 7E 127 LDA,(HL) OODB BD 190 CPL
009D 7F 128 LDA,A OODC BE 191 CP(HL)
009E 80 129 ADDA,B OODD BF 192 CPA
009F 81 130 ADDA,C OODE co 193 RETNZ
OOA0 82 131 ADDA,D OODF Cl 194 POP BC
OOAI 83 132 ADDA,E OOE0 C28405 195 JPNZ,NN
OOA2 84 133 ADDA,H OOE3 C38405 196 JPNN
OOA3 85 134 ADDA,L OOE6 C48405 197 CALLNZ,NN
OOA4 86 135 ADDA,(HL) OOE9 cs 198 PUSH BC
OOA5 87 136 ADDA,A OOEA C620 199 ADDA,N
OOA6 88 137 ADCA,B OOEC C7 200 RST0
OOA7 89 138 ADCA,C OOED cs 201 RETZ
OOA8 8A 139 ADCA,D OOEE C9 202 RET
OOA9 8B 140 ADCA,E OOEF CA8405 203 JPZ,NN
OOAA 8C 141 ADCA,H OOF2 CC8405 204 CALLZ,NN
OOAB 8D 142 ADCA,L OOF5 CD8405 205 CALLNN
OOAC 8E 143 ADCA,(HL) OOFS CE20 206 ADCA,N
OOAD 8F 144 ADCA,A OOFA CF 207 RST8
OOAE 90 145 SUBB OOFB DO 208 RETNC
OOAF 91 146 SUBC OOFC DI 209 POP DE
OOB0 92 147 SUBD OOFD D28405 210 JPNC,NN
OOBl 93 148 SUBE 0100 D320 211 OUTN,A
00B2 94 149 SUBH 0102 D48405 212 CALLNC,NN
OOB3 95 150 SUBL 0105 D5 213 PUSH DE
00B4 96 151 SUB (HL) 0106 D620 214 SUBN
OOB5 97 152 SUBA 0108 D7 215 RST lOH
00B6 98 153 SBCA,B 0109 D8 216 RETC
OOB7 99 154 SBCA,C 0lOA D9 217 EXX
OOBS 9A 155 SBCA,D 010B DA8405 218 JPC,NN
00B9 9B 156 SBCA,E 0lOE DB20 219 INA,N
OOBA 9C 157 SBCA,H 0110 DC8405 220 CALLC,NN
OOBB 9D 158 SBCA,L 0113 DE20 221 SBCA,N
OOBC 9E 159 SBCA,(HL) 0115 DF 222 RST 18H
OOBD 9F 160 SBCA,A 0116 E0 223 RETPO
OOBE AO 161 ANDB 0117 El 224 POPHL
OOBF Al 162 ANDC 0118 E28405 225 JPPO,NN
ooco A2 163 ANDD 0llB E3 226 EX (SP),HL
OOCl A3 164 ANDE 0llC E48405 227 CALLPO,NN
OOC2 A4 165 ANDH OllF E5 228 PUSHHL
OOC3 A5 166 ANDL 0120 E620 229 Al';'DN
OOC4 A6 167 AND(HL) 0122 E7 230 RST20H
OOC5 A7 168 ANDA 0123 E8 231 RETPE
OOC6 A8 169 XORB 0124 E9 232 JP(HL)
OOC7 A9 170 XORC 0125 EA8405 233 JPPE,NN
OOC8 AA 171 XORD 0128 EB 234 EXDE,HL

342

APPENDIX

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0129 EC8405 235 CALLPE,NN CB2D SRA

012C EE20 236 XORN 01A4 CB2E SRA(HLl

012E EF 237 RST28H 0IA6 CB2F SRAA

012F F0 238 RETP 01A8 SRL

0130 Fl 239 POP AF 0lAA SRLC

0131 F28405 240 JPP,NN 0lAC CB3A SRLD

0134 F3 241 DI 0IAE CB3B 304 SRLE

0135 F48405 242 CALLP,NN 0IB0 CB3C 305 SRLH

0138 F5 243 PUSH AF 0182 CB3D 306 SRLL

0139 F620 244 ORN 0184 CB3E 307 SRL(HLl

013B F7 245 RST30H 0IB6 CB3F 308 SRLA

013C F8 246 RETM 0IB8 CB40 309 BIT0,B

013D F9 247 LDSP,HL 0IBA CB41 310 BIT0,C

013E FA8405 248 JPM,NN 0IBC CB42 311 BIT0,D

0141 FB 249 EI 0IBE CB43 312 BIT0,E

0142 FC8405 250 CALLM,NN 0IC0 CB44 313 BIT 0,H

0145 FE20 251 CPN 01C2 CB45 314 BIT0,L

0147 FF 252 RSI 38H 01C4 CB46 315 BIT0,(HL)

0148 CBOO 253 RLCB 01C6 CB47 316 BIT0,A

014A CB0l 254 RLCC 01C8 CB48 317 BIT l,B

014C CB02 255 RLCD 0ICA CB49 318 BIT l,C

014E CB03 256 RLCE 01cc CB4A 319 BIT l,D

0150 CB04 257 RLCH 0lCE CB4B 320 BIT l,E

0152 CB05 258 RLCL 01DO CB4C 321 BIT l,H

0154 CB06 259 RLC(HL) 0102 CB4D 322 BIT l,L

0156 CB07 260 RLCA 01D4 CB4E 323 BIT 1,(HL)

0158 CB08 261 RRCB 0106 CB4F 324 BIT 1,A

015A CB09 262 RRCC 0108 CB50 325 BIT 2,B

015C CB0A 263 RRCD 0lDA CB51 326 BIT 2,C

015E CB0B 264 RRCE 0lDC CB52 327 BIT 2,D

0160 CBOC 265 RRCH 0lDE CB53 328 BIT 2,E

0162 CB0D 266 RRCL 0lE0 CB54 329 BIT 2,H

0164 CB0E 267 RRC(HL) 01E2 CB55 330 BIT 2,L

0166 CB0F 268 RRCA 01E4 CB56 331 BIT 2,(HL)

0168 CBIO 269 RLB 01E6 CB57 332 BIT 2,A

016A CBll 270 RLC 01E8 CB58 333 BIT 3,B

016C CB12 271 RLD 0lEA CB59 334 BIT 3,C

016E CB13 272 RLE 0lEC CB5A 335 BIT 3,D

0170 CB14 273 RLH 0lEE CB5B 336 BIT 3,E

0172 CB15 274 RLL 0lF0 CB5C 337 BIT 3,H

0174 CB16 275 RL(HL) 01F2 CB5D 338 BIT 3,L

0176 CB17 276 RLA 0IF4 CB5E 339 BIT 3,(HL)

0178 CB18 277 RRB 01F6 CB5F 340 BIT 3,A

017A CB19 278 RRC 01F8 CB60 341 BIT 4,B

017C CBlA 279 RRD 0lFA CB61 342 BIT 4,C

017E CBlB 280 RRE 0lFC CB62 343 BIT 4,D

0180 CBlC 281 RRH OlFE CB63 344 BIT 4,E

0182 CBID 282 RRL 0200 CB64 345 BIT 4,H

0184 CBlE 283 RR(HL) 0202 CB65 346 BIT 4,L

0186 CBlF 284 RRA 0204 CB66 347 BIT 4,(HL)

0188 CB20 285 SLAB 0206 CB67 348 BIT4,A

018A CB21 286 SLAC 0208 CB68 349 BIT 5,B

018C CB22 287 SLAD 020A CB69 350 BIT 5,C

018E CB23 288 SLAE 020C CB6A 351 BIT 5,D

0190 CB24 289 SLAH 020E CB6B 352 BIT 5.E

0192 CB25 290 SLAL 0210 CB6C 353 BIT 5,H

0194 CB26 291 SLA(HL) 0212 CB6D 354 BIT 5,L

0196 CB27 292 SLAA 0214 CB6E 355 BIT 5,(HL)

0198 CB28 293 SRAB 0216 CB6F 356 BIT 5,A

019A CB29 294 SRAC 0218 CB70 357 BIT6,B

019C CB2A 295 SRAD 021A CB71 358 BIT6,C

019E CB2B 296 SRAE 021C CB72 359 BIT6,D

0lA0 CB2C 297 SRAH 021E CB73 360 BIT 6,E

343

MODEL 111/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0220 CB74 361 BIT6,H 029E CBB3 424 RES6,E
0222 CB75 362 BIT6,L 02A0 CBB4 425 RES6,H
0224 CB76 363 BIT6,(HL) 02A2 CBB5 426 RES 6,L
0226 CB77 364 BIT6,A 02A4 CBB6 427 RES 6,(HL)
0228 CB78 365 BIT7,B 02A6 CBB7 428 RES6,A
022A CB79 366 BIT7,C 02A8 CBB8 429 RES 7,B
022C CB7A 367 BIT7,D 02AA CBB9 430 RES 7,C
022E CB7B 368 BIT7,E 02AC CBBA 431 RES 7,D
0230 CB7C 369 BIT7,H 02AE CBBB 432 RES 7,E
0232 CB7D 370 BIT7,L 0280 CBBC 433 RES 7,H
0234 CB7E 371 BIT 7,(HL) 0282 CBBD 434 RES 7,L
0236 CB7F 372 BIT7,A 0284 CBBE 435 RES 7,(HL)
0238 CB80 373 RES0,B 0286 CBBF 436 RES 7,A
023A CB81 374 RES0,C 0288 CBC0 437 SET0,B
023C CB82 375 RES0,D 02BA CBC! 438 SET0,C
023E CB83 376 RES0,E 02BC CBC2 439 SET0,D
0240 CB84 377 RES0,H 02BE CBC3 440 SET0,E
0242 CB85 378 RES0,L 02C0 CBC4 441 SET0,H
0244 CB86 379 RES0,(HL) 02C2 CBC5 442 SET0,L
0246 CB87 380 RES0,A 02C4 CBC6 443 SET0,(HL)
0248 CB88 381 RES l,B 02C6 CBC7 444 SET0,A
024A CB89 382 RES 1,C 02C8 CBC8 445 SET l,B
024C CB8A 383 RES 1,D 02CA CBC9 446 SET 1,C
024E CB8B 384 RES l,E 02cc CBCA 447 SET 1,D
0250 CB8C 385 RES l,H 02CE CBCB 448 SET l,E
0252 CB8D 386 RES 1,L 02D0 CBCC 449 SET 1,H
0254 CB8E 387 RES l,(HL) 02D2 CBCD 450 SET l,L
0256 CB8F 388 RES l,A 02D4 CBCE 451 SET l,(HL)
0258 CB90 389 RES 2,B 0206 CBCF 452 SET l,A
025A CB91 390 RES 2,C 0208 CBDO 453 SET2,B
025C CB92 391 RES 2,D 02DA CBDl 454 SET2,C
025E CB93 392 RES 2,E 020C CBD2 455 SET2,D
0260 CB94 393 RES 2,H 020E CBD3 456 SET2,E
0262 CB95 394 RES 2,L 02E0 CBD4 457 SET2,H
0264 CB96 395 RES 2,{HL) 02E2 CBD5 458 SET2,L
0266 CB97 396 RES2,A 02E4 CBD6 459 SET2,{HL)
0268 CB98 397 RES 3,B 02E6 CBD7 460 SET2,A
026A CB99 398 RES 3,C 02E8 CBD8 461 SET3,B
026C CB9A 399 RES 3,D 02EA CBD9 462 SET 3,C
026E CB9B 400 RES 3,E 02EC CBDA 463 SET3,D
0270 CB9C 401 RES 3,H 02EE CBDB 464 SET 3,E
0272 CB9D 402 RES 3,L 02F0 CBDC 465 SET3,H
0274 CB9E 403 RES 3,(HL) 02F2 CBDD 466 SET3,L
0276 CB9F 404 RES 3,A 02F4 CBDE 467 SET 3,(HL)
0278 CBA0 405 RES4,B 02F6 CBDF 468 SET 3,A
027A CBAl 406 RES4,C 02F8 CBEO 469 SET4,B
027C CBA2 407 RES4,D 02FA CBEl 470 SET4,C
027E CBA3 408 RES4,E 02FC CBE2 471 SET4,D
0280 CBA4 409 RES4,H 02FE CBE3 472 SET4,E
0282 CBA5 410 RES4,L 0300 CBE4 473 SET4,H
0284 CBA6 411 RES4,(HL) 0302 CBE5 474 SET4,L
0286 CBA7 412 RES4,A 0304 CBE6 475 SET 4,(HL)

0288 CBA8 413 RES5,B 0306 CBE7 476 SET4,A
028A CBA9 414 RES 5,C 0308 CBE8 477 SET 5,B
028C CBAA 415 RES 5,D 030A CBE9 478 SET 5,C
028E CBAB 416 RES 5,E 030C CBEA 479 SET5,D
0290 CBAC 417 RES 5,H 030E CBEB 480 SET 5,E
0292 CBAD 418 RES 5,L 0310 CBEC 481 SET5,H
0294 CBAE 419 RES5,(HL) 0312 CBED 482 SET 5,L
0296 CBAF 420 RES5,A 0314 CBEE 483 SET 5,(HL)
0298 CBB0 421 RES6,B 0316 CBEF 484 SET 5,A
029A CBBl 422 RES 6,C 0318 CBF0 485 SET6,B
029C CBB2 423 RES 6,D 031A CBFI 486 SET6,C

344

APPENDIX

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
031C CBF2 487 SET6,D 03CE DDCB055E 550 BIT 3,(IX + IND)
031E CBF3 488 SET6,E 03D2 DOCB0566 551 BIT 4,(IX + IND)
0320 CBF4 489 SET6,H 03D6 DOCB056E 552 BIT 5,(IX + INDi
0322 CBF5 490 SET6,L 03DA DDCB0576 553 BIT 6,(IX + IND)
0324 CBF6 491 SET6,(HL) 03DE DDCB057E 554 BIT 7,(IX + IND)
0326 CBF7 492 SET6,A 03E2 DOCB0586 555 RES 0,(IX + IND)
0328 CBF8 493 SET7,B 03E6 DDCB058E 556 RES I ,(IX+ IND)
032A CBF9 494 SET7,C 03EA DDCB0596 557 RES 2,(IX + IND)
032C CBFA 495 SET7,D 03EE DDCB059E 558 RES 3,(IX + IND)
032E CBFB 496 SET7,E 03F2 DDCB05A6 559 RES 4,(IX + IND)
0330 CBFC 497 SET7,H 03F6 DDCB05AE 560 RES 5,(IX + IND)
0332 CBFD 498 SET7,L 03FA DDCB05B6 561 RES 6,(IX + IND)
0334 CBFE 499 SET7,(HL) 03FE DDCB05BE 562 RES 7 ,(IX+ IND)
0336 CBFF 500 SET7,A 0402 DDCB05C6 563 SET 0,{IX + IND)
0338 D009 501 ADDIX,BC 0406 DOCB05CE 564 SET 1,(IX + IND)
033A DO19 502 ADDIX,DE 040A DDCB05D6 565 SET 2,(IX + IND)
033C DD218405 503 LDIX,NN 040E DDCB05DE 566 SET 3,(IX + IND)
0340 OD228405 504 LD(NN),IX 0412 DDCB05E6 567 SET 4,(IX + IND)
0344 DO23 505 INC IX 0416 DDCB05EE 568 SET 5,(IX + IND)
0346 DD29 506 ADDIX,IX 041A DDCB05F6 569 SET 6,(IX + IND)
0348 DD2A8405 507 LDIX,{NN) 041E DDCB05FE 570 SET 7,(IX + IND)
034C DD2B 508 DECIX 0422 ED40 571 IN B,(C)
034E D03405 509 INC (IX+ IND) 0424 ED41 572 OUT(C),B
0351 DO3505 510 DEC (IX+ IND) 0426 ED42 573 SBCHL,BC
0354 DD360520 511 LD (IX+ IND),N 0428 ED438405 574 LD(NN),BC
0358 DD39 512 ADDIX,SP 042C ED44 575 NEG
035A DO4605 513 LD B,(IX + IND) 042E ED45 576 RETN
035D DD4E05 514 LD C,(IX + IND) 0430 ED46 577 IMO
0360 DO5605 515 LD D,(IX + IND) 0432 ED47 578 LDLA
0363 DD5E05 516 LD E,(IX + IND) 0434 ED48 579 IN C,(C)
0366 DD6605 517 LD H,(IX + IND) 0436 ED49 580 OUT(C),C
0369 DD6E05 518 LD L,(IX + IND) 0438 ED4A 581 ADCHL,BC
036C DO7005 519 LD (IX+ IND),B 043A ED4B8405 582 LDBC,(NN)
036F DD7105 520 LD (IX+ IND),C 043E ED4D 583 RETI
0372 DD7205 521 LD (IX+ IND),D ED4F LDR,A
0375 DD7305 522 LD (IX+ IND),E ED5F LDA,R
0378 OD7405 523 LD (IX+ IND),H 0440 ED50 584 IN D,(C)
037B D07505 524 LD (IX+ IND),L 0442 ED51 585 OUT(C),D
037E 007705 525 LD (IX+ IND),A 0444 ED52 586 SBCHL,DE
0381 DD7E05 526 LD A,(IX + IND) 0446 ED538405 587 LD(NN),DE
0384 DD8605 527 ADD A,(IX + IND) 044A ED56 588 IMI
0387 DD8E05 528 ADC A,(IX + IND) 044C ED57 589 LDA,I
038A DD9605 529 SUB {IX+ IND) 044E ED58 590 IN E,(C)
038D DD9E05 530 SBC A,(IX + IND) 0450 ED59 591 OUT(C),E
0390 DDA605 531 AND (IX+ IND) 0452 ED5A 592 ADCHL,DE
0393 DDAE05 532 XOR (IX+ IND) 0454 ED5B8405 593 LDDE,(NN)
0396 DDB605 533 OR(IX+IND) 045A ED60 595 INH,(C)
0399 DDBE05 534 CP(IX+IND) 045C ED61 596 OUT(C),H
039C DDEI 535 POPIX 045E ED62 597 SBCHL,HL
039E DDE3 536 EX (SP),IX 0460 ED67 598 RRD
03A0 DDE5 537 PUSHIX 0462 ED68 599 IN L,(C)
03A2 DDE9 538 JP (IX) 0464 ED69 600 OUT(C),L
03A4 DDF9 539 LD SP,IX 0466 ED6A 601 ADCHL,HL
03A6 DDCB0506 540 RLC (IX+ IND) 0468 ED6F 602 RLD
03AA DDCB050E 541 RRC (IX+ IND) 046A ED72 603 SBCHL,SP
03AE DDCB0516 542 RL(IX+IND) 046C ED738405 604 LD(NN),SP
03B2 DDCB051E 543 RR(IX+IND) 0470 ED78 605 IN A,(C)
03B6 DDCB0526 544 SLA (IX+ IND) 0472 ED79 606 OUT(C),A
03BA DDCB052E 545 SRA (IX+ IND) 0474 ED7A 607 ADCHL,SP
03BE DDCB053E 546 SRL (IX+ IND) 0476 ED7B8405 608 LDSP,(NN)
03C2 DDCB0546 547 BIT 0,(IX + IND) 047A EDA0 609 LDI
03C6 DDCB054E 548 BIT l,(IX + IND) 047C EDAl 610 CPI
03CA DDCB0556 549 BIT 2,(IX + IND) 047E EDA2 611 INI

345

MODEL 111/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0480 EDA3 612 OlJTI 04F5 FDAE05 656 XOR (IY + IND)
0482 EDA8 613 LDD 04F8 FDB605 657 OR(IY+IND)
0484 EDA9 614 CPD 04FB FDBE05 658 CP(IY +IND)
0486 EDAA 615 IND 04FE FDEI 659 POPIY
0488 EDAB 616 OUTD 0500 FDE3 660 EX(SP),IY
048A EDB0 617 LDIR 0502 FDE5 661 PUSHIY
048C EDBI 618 CPIR 0504 FDE9 662 JP (IY)
048E EDB2 619 INIR 0506 FDF9 663 LDSP,IY
0490 EDB3 620 OTIR 0508 FDCB0506 664 RLC (IY + IND)
0492 EDB8 621 LDDR 050C FDCB050E 665 RRC (IY + IND)
0494 EDB9 622 CPDR 0510 FDCB0516 666 RL (IY + IN1>)
0496 EDBA 623 INDR 0514 FDCB051E 667 RR (IY + IND)
0498 EDBB 624 OTDR 0518 FDCB0526 668 SLA (IY + IND)
049A FD09 625 ADDIY,BC 051C FDCB052E 669 SRA (IY + IND)
049C FD19 626 ADDIY,DE 0520 FDCB053E 670 SRL (IY + IND)
049E FD218405 627 LDIY,NN 0524 FDCB0546 671 BIT 0,(IY + IND)
04A2 FD228405 628 LD (NN),IY 0528 FDCB054E 672 BIT l,(IY + IND)
04A6 FD23 629 INCIY 052C FDCB0556 673 BIT 2,(IY + IND)
04A8 FD29 630 ADDIY,IY 0530 FDCB055E 674 BIT 3,(IY + IND)
04AA FD2A8405 631 LD IY,(NN) 0534 FDCB0566 675 BIT 4,(IY + IND)

04AE FD2B 632 DECIY 0538 FDCB056E 676 BIT 5,(IY + IND)

04B0 FD3405 633 INC (IY + IND) 053C FDCB0576 677 BIT 6,(IY + IND)

04B3 FD3505 634 DEC (IY + IND) 0540 FDCB057E 678 BIT 7 ,(IY + IND)

04B6 FD360520 635 LD (IY + IND),N 0544 FDCB0586 679 RES 0,(IY + IND)

04BA FD39 636 ADDIY,SP 0548 FDCB058E 680 RES 1,(IY + IND)

04BC FD4605 637 LD B,(IY + IND) 054C FDCB0596 681 RES 2,(IY + IND)

04BF FD4E05 638 LD C,(IY + IND) 0550 FDCB059E 682 RES 3,(IY + IND)

04C2 FD5605 639 LD D,(IY + IND) 0554 FDCB05A6 683 RES 4,(IY + IND)
0558 FDCB05AE 684 RES 5,(IY + IND)

04C5 FD5E05 640 LD E,(IY + IND) 055C FDCB05B6 685 RES 6,(IY + IND)
04C8 FD6605 641 LD H,(IY + IND) 0560 FDCB05BE 686 RES 7 ,(IY + IND)
04CB FD6E05 642 LD L,(IY + IND) 0564 FDCB05C6 687 SET 0,(IY + IND)
04CE FD7005 643 LD (IY + IND),B 0568 FDCB05CE 688 SET l,(IY + IND)
04Dl FD7105 644 LD (IY + IND),C 056C FDCB05D6 689 SET 2,(IY + IND)
04D4 FD7205 645 LD(IY + IND),D 0570 FDCB05DE 690 SET 3,(IY + IND)
04D7 FD7305 646 LD (IY + IND),E 0574 FDCB05E6 691 SET 4,(IY + IND)
04DA FD7405 647 LD (IY + IND),H 0578 FDCB05EE 692 SET 5,(IY + IND)
04DD FD7505 648 LD (IY + IND),L 057C FDCB05F6 693 SET 6,(IY + IND)
04E0 FD7705 649 LD (IY + IND),A 0580 FDCB05FE 694 SET 7,(IY + IND)
04E3 FD7E05 650 LD A,(IY + IND) 0584 695NN DEFS2
04E6 FD8605 651 ADD A,(IY + IND) 696IND EQU5
04E9 FD8E05 652 ADC A,(IY + IND) 697M EQU IOH
04EC FD9605 653 SUB (IY + IND) 698N EQU20H
04EF FD9E05 654 SBC A,(IY + IND) 699 DIS EQU30H
04F2 FDA605 655 AND (IY + IND) 700 END

346

APPENDIX

Appendix D / Alphabetic List of Instruction Set
Following is an alphabetical listing of the nmemonic or source statement in column four. The object code is
shown in column two.

WC OBJCODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0000 8E 1 ADC A,(HL) 005E CB43 57 BIT 0,E
0001 DD8E05 2 ADC A,(IX+IND) 0060 CB44 58 BIT 0,H
0004 FD8E05 3 ADC A,(IY +IND) 0062 CB45 59 BIT 0,L
0007 8F 4 ADC A,A 0064 CB4E 60 BIT 1,(HL)
0008 88 5 ADC A,B 0066 DDCB054E 61 BIT l,(IX + IND)
0009 89 6 ADC A,C 006A FDCB054E 62 BIT l,(IY + IND)
OOOA 8A 7 ADC A,D 006E CB4F 63 BIT 1,A
OOOB 8B 8 ADC A,E 0070 CB48 64 BIT l,B
oooc 8C 9 ADC A,H 0072 CB49 65 BIT 1,C
OOOD 8D 10 ADC A,L 0074 CB4A 66 BIT 1.D
OOOE CE20 11 ADC A,N 0076 CB4B 67 BIT 1,E
0010 ED4A 12 ADC HL,BC 0078 CB4C 68 BIT 1,H
0012 ED5A 13 ADC HL,DE 007A CB4D 69 BIT l,L
0014 ED6A 14 ADC HL,HL 007C CB56 70 BIT 2,(HL)
0016 ED7A 15 ADC HL,SP 007E DDCB0556 71 BIT 2,(IX+IND)
0018 86 16 ADD A,(HL) 0082 FDCB0556 72 BIT 2,(IY + IND)
0019 DD8605 17 ADD A,(IX+IND) 0086 CB57 73 BIT 2,A
OOlC FD8605 18 ADD A,(IY +IND) 0088 CB50 74 BIT 2,B
OOlF 87 19 ADD A,A 008A CB51 75 BIT 2,C
0020 80 20 ADD A,B 008C CB52 76 BIT 2,D
0021 81 21 ADD A,C 008E CB53 77 BIT 2,E
0022 82 22 ADD A,D 0090 CB54 78 BIT 2,H
0023 83 23 ADD A,E 0092 CB55 79 BIT 2,L
0024 84 24 ADD A,H 0094 CB5E 80 BIT 3,(HL)
0025 85 25 ADD A,L 0096 DDCB055E 81 BIT 3,(IX + IND)
0026 C620 26 ADD A,N 009A FDCB055E 82 BIT 3,(IY + IND)
0028 09 27 ADD HL,BC 009E CB5F 83 BIT 3,A
0029 19 28 ADD HL,DE OOA0 CB58 84 BIT 3,B
002A 29 29 ADD HL,HL OOA2 CB59 85 BIT 3,C
002B 39 30 ADD HL,SP OOA4 CB5A 86 BIT 3,D
002C DD09 31 ADD IX,BC OOA6 CB5B 87 BIT 3,E
002E DD19 32 ADD IX,DE OOA8 CB5C 88 BIT 3,H
0030 DD29 33 ADD IX,IX OOAA CB5D 89 BIT 3,L
0032 DD39 34 ADD IX,SP OOAC CB66 90 BIT 4,(HL)
0034 FD09 35 ADD IY,BC OOAE DDCB0566 91 BIT 4,(IX+IND)
0036 FD19 36 ADD IY,DE OOB2 FDCB0566 92 BIT 4,(IY +IND)
0038 FD29 37 ADD IY,IY OOB6 CB67 93 BIT 4,A
003A FD39 38 ADD IY,SP OOB8 CB60 94 BIT 4,B
003C A6 39 AND (HL) OOBA CB61 95 BIT 4,C
003D DDA605 40 AND (IX+IND) OOBC CB62 96 BIT 4,D
0040 FDA605 41 AND (IY +IND) OOBE CB63 97 BIT 4,E
0043 A7 42 AND A ooco CB64 98 BIT 4,H
0044 AO 43 AND B OOC2 CB65 99 BIT 4,L
0045 Al 44 AND C OOC4 CB6E 100 BIT 5,(HL)
0046 A2 45 AND D OOC6 DDCB056E 101 BIT 5,(IX+ IND)
0047 A3 46 AND E OOCA FDCB056E 102 BIT 5,(IY +IND)
0048 A4 47 AND H OOCE CB6F 103 BIT 5,A
0049 A5 48 AND L 00DO CB68 104 BIT 5,B
004A E620 49 AND N OOD2 CB69 105 BIT 5,C
004C CB46 50 BIT 0,(HL) 00D4 CB6A 106 BIT 5,0
004E DDCB0546 51 BIT 0,(IX+IND) OOD6 CB6B 107 BIT 5,E
0052 FDBC0546 52 BIT 0,(IY +IND) 00D8 CB6C 108 BIT 5,H
0056 CB47 53 BIT 0,A OODA CB6D 109 BIT 5,L
0058 CB40 54 BIT 0,B OODC CB76 110 BIT 6,(HL)
005A CB41 55 BIT o,c OODE DDCB0576 111 BIT 6,(IX+IND)
005C CB42 56 BIT 0,D OOE2 FDCB0576 112 BIT 6,(IY +IND)

347

MODEL 111/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
OOE6 CB77 I 13 BIT 6,A 015C E3 176 EX (SP),HL
OOE8 CB70 114 BIT 6,B 015D DDE3 177 EX (SPJ,IX
OOEA CB71 115 BIT 6,C Ol5F FDE3 178 EX (SP),IY
OOEC CB72 116 BIT 6.D 0161 08 179 EX AF,AF'
OOEE CB73 117 BIT 6,E 0162 EB 180 EX DE,HL
OOFO CB74 118 BIT 6,H 0163 D9 181 EXX
OOF2 CB75 119 BIT 6,L 0164 76 182 HALT
OOF4 CB7E 120 BIT 7,(HL) 0165 ED46 183 IM 0
OOF6 DDCB057E 121 BIT 7,(IX + IND) 0167 ED56 184 L\f l
OOFA FDCB057E 122 BIT 7,(IY + IND) 0169 ED5E 185 IM 2
OOFE CB7F 123 BIT 7,A 016B ED78 186 IN A,(C)
0100 CB78 124 BIT 7,B 016D DB20 187 IN A,(N)
0102 CB79 125 BIT 7,C 0l6F ED40 188 IN B,(C)
0104 CB7A 126 BIT 7,D 0171 ED48 189 IN C,(C)
0106 CB7B 127 BIT 7,E 0173 ED50 190 IN D,(C)
0108 CB7C 128 BIT 7,H 0175 ED58 191 IN E,(C)
0lOA CB7D 129 BIT n 0177 ED60 192 IN H,(C)
0JOC DC8405 130 CALL C,NN 0179 ED68 193 IN L,(C)
0lOF FC8405 131 CALL M,NN 017B 34 194 INC (HL)
0112 D48405 132 CALL NC,NN 0l7C DD3405 195 INC (IX+ IND)
0115 CD8405 133 CALL NN 017F FD3405 196 INC (IY + IND)
0118 C48405 134 CALL NZ,NN 0182 3C 197 INC A
0!IB F48405 135 CALL P,NN 0183 04 198 INC B
0IJE EC8405 136 CALL PE.NN 0184 03 199 INC BC
0121 E48405 137 CALL PO,NN 0185 oc 200 INC C
0124 CC8405 138 CALL Z,NN 0186 14 201 INC D
0127 3F 139 CCF 0187 13 202 INC DE
0128 BE 140 CP (HL) 0188 IC 203 INC E
0129 DDBE05 141 CP (IX+IND) 0189 24 204 INC H
012C FDBE05 142 CP (IY + IND) 018A 23 205 INC HL
012F BF 143 CP A 018B DD23 206 INC IX
0130 BS 144 CP B 018D FD23 207 INC IY
0131 B9 145 CP C Ol8F 2C 208 INC L
0132 BA 146 CP D 0190 33 209 INC SP
0133 BB 147 CP E 0191 EDAA 210 IND
0134 BC 148 CP H 0193 EDBA 211 INDR
0135 BD 149 CP L 0195 EDA2 212 INI
0136 FE20 150 CP N 0197 EDB2 213 INIR
0138 EDA9 151 CPD 0199 E9 214 JP (HL)
013A EDB9 152 CPDR 019A DDE9 215 JP (IX)
013C EDA! 153 CPI 019C FDE9 216 JP (IY)

013E EDBl 154 CPIR 019E DA8405 217 JP C,NN
0140 2F 155 CPL 0lAl FA8405 218 JP M,NN
0141 27 156 DAA 01A4 D28405 219 JP NC.NN
0142 35 157 DEC (HL) 01A7 C38405 220 JP NN

0143 DO3505 158 DEC (IX+IND) 0IAA C28405 221 JP NZ,NN
0146 FD3505 159 DEC (IY +IND) 0lAD F28405 222 JP P,NN
0149 3D 160 DEC A 0IB0 EA8405 223 JP PE,NN
014A 05 161 DEC B 0183 E28405 224 JP PO,NN
014B OB 162 DEC BC 0186 CA8405 225 JP Z,NN
014C OD 163 DEC C 0IB9 382E 226 JR C,DIS
014D 15 164 DEC D 0IBB 182E 227 JR DIS
0!4E lB 165 DEC DE 0IBD 302E 228 JR NC,DIS
014F ID 166 DEC E 0IBF 202E 229 JR NZ.DIS
0150 25 167 DEC H 0lCI 282E 230 JR Z,DIS
0151 2B 168 DEC HL 01C3 02 231 LD (BC),A
0152 DD2B 169 DEC IX 0IC4 12 232 LD (DE),A
0154 FD2B 170 DEC IY 01C5 77 233 LD <HU.A
0156 2D 171 DEC L 01C6 70 234 LD (HLJ,B
0157 3B 172 DEC SP 0IC7 71 235 LO (HL),C
0158 F3 173 DI 01C8 72 236 LD (HL),D

0159 102E 174 DJNZ DIS 0IC9 73 237 LD (HL).E
015B FB 175 EI 0ICA 74 238 LD (HL),H

348

APPENDIX

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
OICB 75 239 LD (HL),L 0255 4D 301 LD C,L
01cc 3620 240 LD (HL),N 0256 0E20 302 LD C,N
0lCE D07705 241 LD (IX+ IND),A 0258 56 303 LD D,(HLJ
0101 DO7005 242 LD (IX +IND),B 0259 DO5605 304 LD D,OX+ IND)
01D4 DO7105 243 LD (IX+ IND),C 025C FD5605 305 LD D,(IY +IND)
0107 DO7205 244 LD (IX+IND),D 025F 57 306 LD D,A
0lDA DO7305 245 LD (IX+ IND),E 0260 50 307 LD D,B
010D DO7405 246 LD (IX+ IND),H 0261 51 308 LD D,C
0IEO D07505 247 LD (IX+IND),L 0262 52 309 LD D,D
01E3 DO360520 248 LD (IX+IND),N 0263 53 310 LD D,E
01E7 FD7705 249 LD (IY+IND),A 0264 54 31 l LD D,H
0lEA FD7005 250 LD (IY + IND),B 0265 55 312 LD D,L
0lED FD7105 251 LD (IY +IND),C 0266 1620 313 LD D.N
0IF0 FD7205 252 LD (IY + IND),D 0268 ED5B8405 314 LD DE,(NNJ
01F3 FD7305 253 LD (IY + IND),E 026C 118405 315 LD DE.NN
01F6 FD7405 254 LD (IY +IND),H 026F 5E 316 LD E,(HL)
01F9 FD7505 255 LD (IY +IND),L 0270 DD5E05 317 LD E,(IX+IND)
0lFC FD360520 256 LD (IY +IND),N 0273 FD5E05 318 LD E,([Y + IND)
0200 328405 257 LD (NN),A 0276 SF 319 LD E,A
0203 ED438405 258 LD (NN),BC 0277 58 320 LD E,B
0207 ED538405 259 LD (NN),DE 0278 59 321 LD E,C
020B 228405 260 LD (NN),HL 0279 5A 322 LD E,D
020E DD228405 261 LD (NN),IX 027A 5B 323 LD E,E
0202 FD228405 262 LD (NN),IY 027B 5C 324 LD E,H
0216 ED738405 263 LD (NN),SP 027C 5D 325 LD E,L
021A 0A 264 LD A,(BC) 027D 1E20 326 LD E,N
021B IA 265 LD A,(DE) 027F 66 327 LD H,(HL)
021C 7E 266 LD A,(HL) 0280 DD6605 328 LD H,(IX+IND)
0210 DD7E05 267 LD A,(IX+IND) 0283 FD6605 329 LD H,(IY +IND)
0220 FD7E05 268 LD A,(IY +IND) 0286 67 330 LD H,A
0223 3A8405 269 LD A,(NN) 0287 60 331 LD H.B
0226 7F 270 LD A,A 0288 61 332 LD H,C
0227 78 271 LD A,B 0289 62 333 LD H,D
0228 79 272 LD A,C 028A 63 334 LD H,E
0229 7A 273 LD A,D 028B 64 335 LD H,H
022A 7B 274 LD A,E 028C 65 336 LD H,L
022B 7C 275 LD A,H 028D 2620 337 LD H,N
022C ED57 276 LD A,I 028F 2A8405 338 LD HL,(NN)
022E 7D 277 LD A,L 0292 218405 339 LD HLSN
022F 3E20 278 LD A,N 0295 ED47 340 LD I,A

ED5F 278.1 LD A,R 0297 DD2A8405 341 LD IX,(NN)
0231 46 279 LD B,(HL) 029B DD218405 342 LD IX,NN
0232 DD4605 280 LD B,(IX + IND) 029F FD2A8405 343 LD IY,(NNl
0235 FD4605 281 LD B,(IY +IND) 02A3 FD218405 344 LD IY,NN
0238 47 282 LD B,A 02A7 6E 345 LD L,(HL)
0239 40 283 LD B,B 02A8 DD6E05 346 LD L.(IX+INDJ
023A 41 284 LD B,C 02AB FD6E05 347 LD L,(IY+INDl
023B 42 285 LD B,D 02AE 6F 348 LD L,A
023C 43 286 LD B,E 02AF 68 349 LD L,B
023D 44 287 LD B,H 02B0 69 350 LD L,C
023E 45 288 LD B,L 02B1 6A 351 LD L,D
023F 0620 289 LD B,N 02B2 6B 352 LD L,E
0241 ED4B8405 290 LD BC,(NN) 02B3 6C 353 LD L.H
0245 018405 291 LD BC,NN 02B4 6D 354 LD L,L
0248 4E 292 LD C,(HL) 02B5 2E20 355 LD L,N
0249 DD4E05 293 LD C,(IX+IND) ED4F LD R.A
024C FD4E05 294 LD C,(IY +IND) 02B7 ED7B8405 356 LD SP.(NNl
024F 4F 295 LD C,A 028B F9 357 LD SP,HL
0250 48 296 LD C,B 02BC DDF9 358 LD SP.IX
0251 49 297 LD c,c 02BE FDF9 359 LD SPJY
0252 4A 298 LD C,D 02C0 318405 360 LD SP.NN
0253 4B 299 LD C,E 02C3 EDA8 361 LDD
0254 4C 300 LD C,H 02C5 EDB8 362 LDDR

349

MODEL 111/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
02C7 EDA0 363 LDI CB90 426 RES 2,B

ED80 364 LDIR 0344 C891 427 RES 2,C
02CB ED44 365 NEG 0346 C892 428 RES 2,D
02CD 00 366 NOP 0348 CB93 429 RES 2,E
02CE 86 367 OR (HL) 034A C894 430 RES 2,H
02CF DD8605 OR (IX+ IND) 034C CB95 431 RES 2,L
0202 FD8605 369 OR (IY + IND) 034E C89E 432 RES 3,(HL)
0205 B7 370 OR A 0350 DDCB059E 433 RES 3,(IX+IND)
02D6 BO 371 OR B 0354 FDCB059E 434 RES 3,(IY + IND)
0207 Bl 372 OR C 0358 CB9F 435 RES 3,A
0208 82 373 OR D 035A CB98 436 RES 3,B
0209 83 374 OR E 035C CB99 437 RES 3,C
02DA B4 375 OR H 035E CB9A 438 RES 3,D
02DB BS 376 OR L 0360 CB9B 439 RES 3,E
02DC F620 377 OR N 0362 CB9C 440 RES 3,H
02DE ED8B 378 OTDR 0364 CB9D 441 RES 3,L
02E0 EDB3 379 OTIR 0366 CBA6 442 RES 4,(HL)
02E2 ED79 380 OUT (C),A 0368 DDCB05A6 443 RES 4,(IX+IND)
02E4 ED41 381 OUT (C),B 036C FDCB05A6 444 RES 4,(IY + IND)
02E6 ED49 382 OUT (C),C 0370 CBA7 445 RES 4,A
02E8 EDS! 383 OUT (C),D 0372 CBA0 446 RES 4,B
02EA ED59 384 OUT (C),E 0374 CBAI 447 RES 4,C
02EC ED61 385 OUT (C),H 0376 CBA2 448 RES 4,D
02EE ED69 386 OUT (C),L 0378 CBA3 449 RES 4,E
02F0 D320 387 OUT N,A 037A CBA4 450 RES 4,H
02F2 EDAB 388 OUTD 037C CBA5 451 RES 4,L
02F4 EDA3 389 OUTI 037E CBAE 452 RES 5,(HL)
02F6 Fl 390 POP AF 0380 DDCB05AE 453 RES 5,(IX+IND)
02F7 Cl 391 POP BC 0384 FDCB05AE 454 RES 5,(IY +IND)
02F8 DI 392 POP DE 0388 CBAF 455 RES 5,A
02F9 El 393 POP HL 038A CBA8 456 RES 5,B
02FA DDEI 394 POP IX 038C CBA9 457 RES 5,C
02FC FDEI 395 POP IY 038E CBAA 458 RES 5,D
02FE F5 396 PUSH AF 0390 CBAB 459 RES 5,E
02FF cs 397 PUSH BC 0392 CBAC 460 RES 5,H
0300 D5 398 PUSH DE 0394 CBAD 461 RES 5,L
0301 ES 399 PUSH HL 0396 CBB6 462 RES 6,(HL)
0302 DDE5 400 PUSH IX 0398 DDCB05B6 463 RES 6,(IX+IND)
0304 FDE5 401 PUSH IY 039C FDCB05B6 464 RES 6,(IY+IND)
0306 CB86 402 RES 0,(HL) 03A0 CBB7 465 RES 6,A
0308 DDCB0586 403 RES 0,(IX+ IND) 03A2 CBB0 466 RES 6,B
030C FDCB0S86 404 RES 0,(IY +IND) 03A4 CBBI 467 RES 6,C
0310 CB87 405 RES 0,A 03A6 CBB2 468 RES 6,D
0312 CB80 406 RES 0,B 03A8 CBB3 469 RES 6,E
0314 CB81 407 RES o,c 03AA CBB4 470 RES 6,H
0316 CB82 408 RES 0,D 03AC CBB5 471 RES 6,L
0318 CB83 409 RES 0,E 03AE CBBE 472 RES 7,(HL)
031A CB84 410 RES 0,H 03B0 DDCB05BE 473 RES 7,(IX+IND)
031C CB85 411 RES 0,L 03B4 FDCB058E 474 RES 7,(IY +IND)
031E CB8E 412 RES 1,(HL) 03B8 CBBF 475 RES 7,A
0320 DDCB058E 413 RES 1,(IX + IND) 03BA CBB8 476 RES 7,B
0324 FDCB058E 414 RES l,(IY + IND) 03BC CBB9 477 RES 7,C
0328 CB8F 415 RES l,A 03BE CBBA 478 RES 7,D
032A CB88 416 RES l,B 03C0 CBBB 479 RES 7,E
032C CB89 417 RES 1,C 03C2 CBBC 480 RES 7,H
032E CB8A 418 RES l,D 03C4 CBBD 481 RES 7,L
0330 CB8B 419 RES LE 03C6 C9 482 RET
0332 CB8C 420 RES l,H 03C7 D8 483 RET C
0334 CB8D 421 RES l,L 03C8 F8 484 RET M
0336 CB96 422 RES 2,(HL) 03C9 DO 485 RET NC
0338 DDCB0596 423 RES 2,(IX+IND) 03CA co 486 RET NZ
033C FDCB0596 424 RES 2,(IY + IND) 03CB F0 487 RET p

0340 CB97 425 RES 2,A 03CC ES 488 RET PE

350

APPENDIX

LOC OBJCODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
03CD E0 489 RET PO 044C 99 552 SBC A.C

03CE cs 490 RET z 044D 9A 553 SBC A.D
03CF ED4D 491 RETI 044E 9B 554 SBC A.E
03D1 ED45 492 RETN 044F 9C 555 SBC A,H

03D3 CB16 493 RL (HL) 0450 9D 556 SBC A.L
03D5 DDCB0516 494 RL (IX+IND) 0451 DE20 557 SBC A.N

03D9 FDCB0516 495 RL (IY+IND) 0453 ED42 558 SBC HL.BC

03OD CB17 496 RL A 0455 ED52 559 SBC HL.DE
03DF CBIO 497 RL B 0457 ED62 560 SBC HL.HL

03EI CBll 498 RL C 0459 ED72 561 SBC HL.SP

03E3 CB12 499 RL D 045B 37 562 SCF
03E5 C813 500 RL E 045C CBC6 563 SET 0,(HLl

03E7 CB14 501 RL H 045E DDCB05C6 564 SET 0.(IX + IND)

03E9 CB15 502 RL ,L 0462 FDCB05C6 565 SET 0,(IY + IND)

03EB 17 503 RLA 0466 CBC7 566 SET 0,A

03EC CB06 504 RLC (HL) 0468 CBC0 567 SET 0.B
03EE DDCB0506 505 RLC (IX+IND) 046A CBCl 568 SET o.c
03F2 FDCB0506 506 RLC (IY +IND) 046C CBC2 569 SET 0.D
03F6 CB07 507 RLC A 046E CBC3 570 SET 0.E
03F8 CBOO 508 RLC B 0470 CBC4 571 SET 0,H

03FA CB0I 509 RLC C 0472 CBC5 572 SET 0.L

03FC CB02 510 RLC D 0474 CBCE 573 SET UHL)

03FE CB03 511 RLC E 0476 DDCB05CE 574 SET I ,(IX+ INDJ

0400 CB04 512 RLC H 047A FDCB05CE 575 SET l,(IY+IND)

0402 CB05 513 RLC L 047E CBCF 576 SET 1,A

0404 07 514 RLCA 0480 CBC8 577 SET LB

0405 ED6F 515 RLD 0482 CBC9 578 SET LC

0407 CBIE 516 RR (HL) 0484 CBCA 579 SET 1,D

0409 DDCB051E 517 RR (IX+IND) 0486 CBCB 580 SET l,E

040D FDCB051E 518 RR (IY+IND) 0488 CBCC 581 SET l,H

0411 CBlF 519 RR A 048A CBCD 582 SET 1,L

0413 CB18 520 RR B 048C CBD6 583 SET 2,(HL)

0415 CB19 521 RR C 048E DDCB05D6 584 SET 2,(IX-t-INDJ

0417 CBlA 522 RR D 0492 FDCB05D6 585 SET 2,(IY+IND)

0419 CBIB 523 RR E 0496 CBD7 586 SET 2,A

0418 CBIC 524 RR H 0498 CBD0 587 SET 2,B

0410 CBlD 525 RR L 049A CBDl 588 SET 2,C

04IF IF 526 RRA 049C CBD2 589 SET 2.D

0420 CB0E 527 RRC (HL) 049E CBD3 590 SET 2.E

0422 DDCB050E 528 RRC (IX+IND) 04A0 CBD4 591 SET 2,H

0426 FDCB050E 529 RRC (IY+IND) 04A2 CBD5 592 SET 2,L

042A CBOF 530 RRC A 04A4 CBD8 593 SET 3,B

042C CB08 531 RRC B 04A6 CBDE 594 SET 3,(HL)

042E CB09 532 RRC C 04A8 DDCB05DE 595 SET 3.(IX+IND)

0430 CB0A 533 RRC D 04AC FDCB05DE 596 SET 3,(IY + IND)

0432 CB0B 534 RRC E 04B0 CBDF 597 SET 3,A

0434 CBOC 535 RRC H 04B2 CBD9 598 SET 3,C

0436 CBOD 536 RRC L 04B4 CBDA 599 SET 3.D

0438 OF 537 RRCA 04B6 CBDB 600 SET 3,E

0439 ED67 538 RRD 04B8 CBDC 601 SET 3.H

043B C7 539 RST 0 04BA CBDD 602 SET 3.L

043C D7 540 RST IOH 04BC CBE6 603 SET 4,(HLl

043D DF 541 RST 18H 04BE DDCB05E6 604 SET 4,(IX+INDl

043E E7 542 RST 20H 04C2 FDCB05E6 605 SET 4,0Y + IND)

043F EF 543 RST 28H 04C6 CBE7 606 SET 4.A

0440 F7 544 RST 30H 04C8 CBE0 607 SET 4.B

0441 FF 545 RST 38H 04CA CBEl 608 SET 4.C

0442 CF 546 RST 08H 04CC CBE2 609 SET 4.D

0443 9E 547 SBC A,(HL) 04CE CBE3 610 SET 4.E

0444 DD9E05 548 SBC A,(IX+IND) 04DO CBE4 611 SET 4,H

0447 FD9E05 549 SBC A,(IY +IND) 04D2 CBE5 612 SET 4,L

044A 9F 550 SBC A,A 04D4 CBEE 613 SET 5.(HL)

044B 98 551 SBC A,B 04D6 DDCB05EE 614 SET 5.(IX + INDl

351

MODEL 111/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
04DA FDCB05EE 615 SET 5,(IY + IND) 0542 CB29 658 SRA
04DE CBEF 616 SET 5,A 0544 CB2A 659 SRA
04E0 CBE8 617 SET 5,B 0546 CB2B 660

CBE9 618 SET 5,C 0548 CB2C 661 SRA
CBEA 619 SET 5,D 054A CB2D 662 SRA

04E6 CBEB 620 SET 5,E 054C CB3E 663
04E8 CBEC 621 SET 5,H 054E DDCB053E 664 SRL IND)
04EA CBED 622 SET 5,L 0552 FDCB053E 665 SRL (IY +IND)
04EC CBF6 623 SET 6,(HL) 0556 CB3F 666 SRL A
04EE DDCB05F6 624 SET 6,(IX +IND) 0558 CB38 667 SRL B
04F2 FDCB05F6 625 SET 6,(IY + IND) 055A CB39 668 SRL C
04F6 CBF7 626 SET 6,A 055C CB3A 669 SRL D
04F8 CBF0 627 SET 6,B 055E CB3B 670 SRL E
04FA CBFl 628 SET 6,C 0560 CB3C 671 SRL H
04FC CBF2 629 SET 6,D 0562 CB3D 672 SRL L
04FE CBF3 630 SET 6,E 0564 % 673 SUB (HL)
0500 CBF4 631 SET 6,H 0565 DD9605 674 SUB (IX+IND)
0502 CBF5 632 SET 6,L 0568 FD9605 675 SUB (IY+IND)
0504 CBFE 633 SET 7,(HL) 056B 97 676 SUB A
0506 DDCB05FE 634 SET 7,(IX+IND) 056C 90 677 SUB B
050A FDCB05FE 635 SET 7,(IY +IND) 056D 91 678 SUB C
050E CBFF 636 SET 7,A 056E 92 679 SUB D
0510 CBF8 637 SET 7,B 056F 93 680 SUB E
0512 CBF9 638 SET 7,C 0570 94 681 SUB H
0514 CBFA 639 SET 7,D 0571 95 682 SUB L
0516 CBFB 640 SET 7,E 0572 D620 683 SUB N
0518 CBFC 641 SET 7,H 0574 AE 684 XOR (HL)
051A CBFD 642 SET 7,L 0575 DDAE05 685 XOR (IX+ IND)
051C CB26 643 SLA (HL) 0578 FDAE05 686 XOR (IY +IND)
051E DDCB0526 644 SLA (IX+ IND) 057B AF 687 XOR A
0522 FDCB0526 645 SLA (IY+IND) 057C A8 688 XOR B
0526 CB27 646 SLA A 057D A9 689 XOR C
0528 CB20 647 SLA B 057E AA 690 XOR D
052A CB21 648 SLA C 057F AB 691 XOR E
052C CB22 649 SLA D 0580 AC 692 XOR H
052E CB23 650 SLA E 0581 AD 693 XOR L
0530 CB24 651 SLA H 0582 EE20 694 XOR N
0532 CB25 652 SLA L 0584 695NN DEFS
0534 CB2E 653 SRA (HL) 696IND EQU 5
0536 DDCB052E 654 SRA (IX+ IND) 697M I0H
053A FDCB052E 655 SRA (IY + IND) 698N 20H
053E CB2F 656 SRA A 699 DIS EQU 30H
0540 CB28 657 SRA B 700 END

352

Appendix E / Z-80 CPU Register and
Architecture

This section gives information about the actual Z8O chip including the Central
no,ce~;smtg Unit (CPU) Register configuration.

Z-80 CPU Architecture

A block diagram of the internal architecture of the z-so CPU is shown in Figure 2.
The diagram shows all of the major elements in the CPU and it should be referred
to throughout the following description.

CPU Registers

The z-so CPU contains 208 bits of R/W memory that are accessible to the
programmer. Figure 3 illustrates how this memory is configured into eighteen
8-bit registers and four 16-bit registers. All z-so registers are implemented using
static RAM. The registers include two sets of six general purpose registers that
may be used individually as 8-bit registers or in pairs of 16-bit registers. There
are also two sets of accumulator and flag registers.

Special Purpose Registers

13
CPU AND
SYSTEM
CONTROL
SIGNALS

INSTRUCTION
DECODE

• CPU
CONTROL

Figure 2, Z-80 CPU Block Diagram.

iir
+5VGND ,1,

8-BIT
DATA BUS

16-BIT
ADDRESS BUS

ALU

APPENDIX

353

MODEL 111/4 ALDS

MAIN REG SET ALTERNATE REG SET

ACCUMULATOR FLAGS ACCUMULATOR
A F A'

B C B'

D E D'

H L H'

INTERRUPT I MEMORY
VECTOR REFRESH
I R

INDEX REGISTER IX

INDEX REGISTER IV

STACK POINTER SP

PROGRAM COUNTER PC

Figure 3, Z-80 CPU Register Configuration.

FLAGS
F'

C'

E'

L'

SPECIAL
PURPOSE
REGISTERS

}

GENERAL
PURPOSE
REGISTERS

1. Program Counter (PC). The program counter holds the 16-bit address of
the current instruction being fetched from memory. The PC is automatically
incremented after its contents have been transferred to the address lines.
When a program jump occurs the new value is automatically placed in the PC,

overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current
top of a stack located anywhere in external system RAM memory. The external
stack memory is organized as a last-in first-out (LIFO) file.

Data can be pushed onto the stack from specific CPU registers or popped off of
the stack into specific CPU registers through the execution of PUSH and POP

instructions. The data popped from the stack is always the last data pushed
onto it. The stack allows simple implementation of multiple level interrupts,
unlimited subroutine nesting and simplification of many types of data
manipulation.

3. lwo Index Registers (Ix & IY). The two independent index registers hold a
16-bit base address that is used in indexed addressing modes. In this mode, an
index register is used as a base to point to a region in memory from which
data is to be stored or retrieved. An additional byte is included in indexed
instructions to specify a displacement from this base. This displacement is
specified as a two's complement signed integer. This mode of addressing
greatly simplifies many types of programs, especially where tables of data
are used.

354

4. Interrupt Page Address Register (1). The z-so CPU can be operated in a mode
where an indirect call to any memory location can be achieved in response to
an interrupt. The I Register is used for this purpose to store the high order
8-bits of the indirect address while the interrupting device provides the lower
8-bits of the address. This feature allows interrupt routines to be dynamically
located anywhere in memory with absolute minimal access time to the
routine.

S. Memory Refresh Register (R). The z-so CPU contains a memory refresh
counter to enable dynamic memories to be used with the same ease as static
memories. Seven bits of this 8 bit register are automatically incremented after
each instruction fetch. The eighth bit will remain as programmed as the result
of an LD R, A instruction. The data in the refresh counter is sent out on the
lower portion of the address bus along with a refresh control signal while the
CPU is decoding and executing the fetched instruction. This mode of refresh is
totally transparent to the programmer and does not slow down the CPU

operation. The programmer can load the R register for testing purposes, but
this register is normally not used by the programmer. During refresh, the
contents of the I register are placed on the upper 8 bits of the address bus.

Accumulator and Flag Registers

The CPU includes two independent 8-bit accumulators and associated 8-bit flag
registers. The accumulator holds the results of 8-bit arithmetic or logical
operations while the flag register indicates specific conditions for 8 or 16-bit
operations, such as indicating whether or not the result of an operation is equal to
zero. The programmer selects the accumulator and flag pair that he wishes to
work with a single exchange instruction so that he may easily work with either
pair.

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six
8-bit registers that may be used individually as 8-bit registers or as 16-bit
register pairs by the programmer. One set is called BC, DE and HL while the
complementary set is called Bc: DE' and HL.' At any one time the programmer can
select either set of registers to work with through a single exchange command for
the entire set. In systems where fast interrupt response is required, one set of
general purpose registers and an accumulator/flag register may be reserved for
handling this very fast routine. Only a simple exchange command need be
executed to go between the routines. This greatly reduces interrupt service time
by eliminating the requirement for saving and retrieving register contents in the
external stack during interrupt or subroutine processing. These general purpose
registers are used for a wide range of applications by the programmer. They also
simplify programming, especially in ROM based systems where little external
read/write memory is available.

APPENDIX

355

MODEL 111/4 ALDS

Arithmetic & Logic Unit (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the ALU.

Internally the ALU communicates with the registers and the external data bus on
the internal data bus. The type of functions performed by the ALU include:

Add Left or right shifts or rotates (arithmetic and logical)

Subtract Increment

Logical AND Decrement

Logical OR Set bit

Logical Exclusive OR Reset bit

Compare Test Bit

Instruction Register and CPU Control

As each instruction is fetched from memory, it is placed in the instruction
register and decoded. The control sections performs this function and then
generates and supplies all of the control signals necessary to read or write data
from or to the registers, control the ALU and provide all required external control
signals.

Z-80 CPU Pin Description

The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package.
The vo pins are shown in Figure 4 and the function of each is described below.

A0-A1s
(Address Bus)

D0-D1
(Data Bus)

M1
(Machine Cycle
one)

356

Tri-state output, active high. ~-A15 constitute a 16-bit
address bus. The address bus provides the address for
memory (up to 64K bytes) data exchanges and for I/0 device
data exchanges. I/0 addressing uses the 8 lower address bits
to allow the user to directly select up to 256 input or 256
output ports. ~ is the least significant address bit. During
refresh time, the lower 7 bits contain a valid refresh address.

Tri-state input/output, active high. D0-D7 constitute an 8-bit
bidirectional data bus. The data bus is used for data
exchanges with memory and I/0 devices.

Output, active low. M1 indicates that the current machine
cycle is the OP code fetch cycle of an instruction execution.
Note that during execution of 2-byte op-codes, M1 is
generated as each op-code byte is fetched. These two byte
op-codes always begin with CBH, DOH, EDH or FDH.
also occurs with IORQ to indicate an interrupt acknowledge
cycle.

(Pi,
30

Ao
A1 j MREO A2

SYSTEM ~AO A3

CONTROL) AO A4

I WR A5

As
I_ 28 A7 _ RFSH ADDRESS

Aa BUS

rLT
18 Ag

A!O

WAtf All

CPU Z-80 CPU A12

CONTROL INT A13

1
NMI A14

l RESET

A15

CPU {~
BUS
CONTROL BUSAK

Do

o,

'" D2

+5V D3 DATA
GNO D4 BUS

D5

D6

D7

Figure 4, 2-80 Pin Configuration.

MREQ
(Memory
Request)

IORQ
(Input/Output
Request)

RD
(Memory Read)

WR
(Memory Write)

Tri-state output, active low. The memory request signal
indicates that the address bus holds a valid address for a
memory read or memory write operation.

Tri-state output, active low. The IORQ signal indicates that
the lower half of the address bus holds a valid l/0 address
for a l/0 read or write operation. An IORQ signal is also
generated with an M 1 signal when an interrupt is being
acknow !edged to indicate that an interrupt response vector
can be placed on the data bus. Interrupt Acknowledge
operations occur during M 1 time while l/0 operations never
occur during M1 time.

Tri-state output, active low. RD indicates that the CPU wants
to read data from memory or an l/0 device. The addressed
l/0 device or memory should use this signal to gate data
onto the CPU data bus.

Tri-state output, active low. WR indicates that the CPU data
bus holds valid data to be stored in the addressed memory or
I/0 device.

APPENDIX

357

MODEL 111/4 ALDS

RFSH
(Refresh)

HALT
(Halt state)

WAIT
(Wait)

INT
(Interrupt
Request)

NMI
(Non Maskable
Interrupt)

RESET

358

Output, active low. RFSH indicates that the lower 7 bits of
the address bus contain a refresh address for dynamic
memories and the current MREQ signal should be used to do
a refresh read to all dynamic memories.

Output, active low. HALT indicates that the CPU has
executed a HALT software instruction and is awaiting either
a non maskable or a maskable interrupt (with the mask
enabled) before operation can resume. While halted, the
CPU executes NOP's to maintain memory refresh activity.

Input, active low. WAIT indicates to the Z-80 CPU that the
addressed memory or I/0 devices are not ready for a data
transfer. The CPU continues to enter wait states for as long
as this signal is active. This signal allows memory or I/0
devices of any speed to be synchronized to the CPU.

Input, active low. The Interrupt Request signal is generated
by I/0 devices. A request will be honored at the end of the
current instruction if the internal software controlled ---
interrupt enable flip-flop (IFF) is enabled and if the BUSRQ
signal is not active. When the CPU accepts the interrupt, an
acknowledge signal (IORQ during M1 time) is sent out at the
beginning of the next instruction cycle.

Input, negative edge triggered. The non maskable interrupt
request line has a higher priority than INT and is always
recognized at the end of the current instruction, independent
of the status of the interrupt enable flip-flop. NMI
automatically forces the Z-80 CPU to restart to location
0066H. The program counter is automatically saved in the
external stack so that the user can return to the program that
was interrupted. Note that continuous WAIT cycles can
prevent the current instruction from ending, and that a
BUSRQ will override a NMI.

Input, active low. RESET forces the program counter to zero
and initializes the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop
2) Set Register I = 00H
3) Set Register R = OOH
4) Set Interrupt Mode 0

During reset time, the address bus and data bus go to a high
impedance state and all control output signals go to the
inactive state.

BUSRQ
(Bus Request)

BUSAK
(Bus
Acknowledge)

Input, active low. The bus request signal is used to
the CPU address bus, data bus and tri-state output control
signals to go to a high impedance state so that other
can control these buses. When BUSRQ is activated, the
will set these buses to a high impedance state as soon as the
current CPU machine cycle is terminated.

Output, active low. Bus acknowledge is used to indicate to
the requesting device that the CPU address bus, data bus and
tri-state control bus signals have been set to their high
impedance state and the external device can now control
these signals.

Single phase TTL level clock which requires only a 330 ohm
pull-up resistor to + 5 volts to meet all clock requirements.

Z-80 CUP Instruction Set
The z-so CPU can execute 158 different instruction types including all 78 of the
8080A CPU. The instructions can be broken down into the following major
groups:

• Load and Exchange

• Block Transfer and Search

• Arithmetic and Logical

• Rotate and Shift

• Bit Manipulation (set, reset, test)

• Jump, Call and Return

• Input/Output

• Basic CPU Control

APPENDIX

359

INDEX

INDEX
Subject Page Subject Page

* .. 113 16 bit load group 141-161

8 bit load group. 123-140
LO r,r' 123
LO r,n 124
LO r,(HL) 125
LO r,(IX+D) 125-126
LO r,(IV +d) 127
LO (HL),r 128
LO (IX+d),r 128-129
LO (IV +d),r 129-130
LO (HL),n 130-131
LD(IX+d),n 131

LO dd,nn 141-142
LO IX,nn 142
LO IY,nn 143
LO HL,(nn) 143-144
LO dd,(nn) 144-145
LO IX,(nn) 145-146
LO IY,(nn) 146-147
LO (nn),HL 147-148
LO (nn),dd 148-149
LO (nn),IX 149-150
LO (nn),IV 150-151
LO SP,HL 151-152

LO (IV +d),n 132 LO SP,IX 152
LO A,(BC) 133 LO SP,IV 153
LO A,(DE) 133-134 16 bit arithmetic group 217-226
LO A,(nn) 134-135 ADD HL,ss 217
LO (BC),A 135 ADC HL,ss 218
LO (DE),A 135-136 ADD IX,pp 220
LO (nn),A 136-137 ADD IY,rr 221
LO A,I 137 DEC ss 224
LDA,R 138 DEC IX 225
LO l,A 138-139 DEC IV 225-226

LO R,A 139-140 INC ss 222

8 bit arithmetic and logical 181-205
ADD A,(HL) 183
ADD A,(IX+d) 183-184
ADD A,(IV +d) 184-185
ADD A,n 182
ADD A,r 181-182
ADD A,S 185-187
AND s 191-193
CP s 198-199
DEC m 203-205
INC (HL) 201
INC (IX+ d) 201-202
INC (IV+ d) 202-203
INC r 200

INC IX 222-223
INC IV 223-224
SBC HL,ss 219

Absolute Assembly 72
ADC A,XH 337
ADC HL,ss 218
ADD A,(HL) 183
ADD A,(IX+d) 183-184
ADD A,(IV +d) 184-185
ADD A,n 182
ADD A,r 181-182
ADD A,S 185-187
ADD A,XH 337
ADD HL,ss 217
ADD IX,pp 220

OR s 193-195 ADD IY,rr 221
SUB s 187-189 Address Different from Pass 1 327
SBC A,s 189-191 ALASM (see Assembler)
XOR s 195-197 ALBUG (see Debugger)

361

MODEL 111/4 ALDS

Subject
ALEDIT (see Editor)
ALLINK (see Linker)
Altran (See File Transfer)

Page

Ands 191-193
AndXH 337
APOP 88
APUSH 88
Arithmetic Operators 64-66
ASCII (see DEFM)
Assembler

Command 23
Description 23-27
Directives 69-113
Errors 327
Expressions 63-64
Labels 61-62
Object Code Format 338-340
Operands 63-67
Operators 64-67
Switches 24-26
Symbols 61-62

Assembler Listing
Description 23-26
EJECT 93
HEADER 97-98
PRINT 106-107
QUIT 109
STOP 112
TITLE 113
USING 113
VERSION 113

Attempt to Use a Non-Program File
as a Program 331

Bad File Format 325
Bad Filename Format. 325
Bad Parameters 325
BLOCK (see DEFS)
block comment . 113-114
BIT b,(HL) 254-255
BIT b,(IX + d) 255-256
BIT b,(IY + d) 256-257
BIT b,r 253-254
Bit,set,reset, and test group 253-263

BIT b,(HL) 254-255
BIT b,(IX + d) 255-256
BIT b,(IY + d) 256-257

362

Subject Page
BIT b,r 253-254
RES b,m 262-263
SET b,r 257-258
SET b,(HL) 258-259
SET b,(IX + d) 259-260
SET b,(IY +d) 261-262

Buffer Full 325
BYTE (see DEFB)
CALL cc,nn 278-280
CALL nn 277-278
Call and return group 277-286

CALL cc,nn 278-280
CALL nn 277-278
RET 280-281
RETcc 281-283
RETI 283-284
RETN 284-285
AST p 285-286

CCF 210
CMPD operand1,operand2,

[length] 304-306
CMPI operand1,operand2,

length 306-308
comment. 67-68, 113-114
Conditional Sections (see If Sections)
CPD 178-179
CPDR 179-180
CPI 175-177
CPIR 177-178
CPL 208-209
CP s 198-199
CPXH 337
CPR operand 303-304
DAA 207-208
Data

Defining 70
DEFB 89-90
DEFE 90
DEFM 91
DEFR 91
DEFT 92
DEFW 92-93

DATE 89
DB (see DEFB)

Subject Page
Debugger

Description 29-42
Loading 29-31
Display 30-31
Registers 32
Data 32-33
Breakpoints 33,34-36
Disk Zap 41-42

DEC IX 225
DEC IY 225-226
DEC m 203-205
DEC ss 224
DECXH 337
DEFB 89-90
DEFE 90
DEFL 90
DEFM 91
DEFR 91
DEFS 92
DEFT 92
DEFW 92-93
DS (see DEFS)
DW (see DEFW)
DI 212-213
Directives 69-113

Introduction 69-86
Reference 86-114

Disk Zap 40-42
DJNZ e 275-276
DROP 93
Editor

Description 11-13
Errors 325
Loading 11
Insert Mode 19-21

Control 20
Special Keys 21

Line Edit Mode 21-22
Subcommands 21
Special Keys 22

Command Mode 12-18
Special Keys 13
Commands 14-18

Compatibility with other Editors 18
El .. 213
EJECT 93

INDEX

Subject Page
END 93-94
ENDl 94
ENDM 94
ENTRY (see PUBLIC)
EQU 94
ERROR 24 331
ERROR 34 331
ERROR 37 331
Error Messages 323-331
EX AF,AF'. 163-164
Exchange,Search, and Transfer ... 163-180

CPI 175-177
CPIR 177-178
CPD 178-179
CPDR 179-180
EX DE,HL....... 163
EX AF,AF' , 163-164
EXX 164-165
EX (SP),HL 165-166
EX (SP),IX 166-167
EX (SP),IY 167-168
LOI 169-170
LOIA. 170-172
LDD 172-173
LDDR. 173-175

EX DE,HL 163
EX operand 309-310
Expressions 63-64
EX (SP),HL 165-166
EX (SP),IX 166-167
EX (SP),IY 167-168
EXT 94-95
Extended 280 Mnemonics 303-321

CPR operand 303-304
CMPD operand1, operand2,

[length] 304-306
CMPI operand1, operand2,

length 306-308
TZ operand 308
EX operand 309-31 O
LD double register 310-315
MOVD operand1, operand2,

length 315-316
MOVI operand1, operand2,

length 317-318
POP 318

363

MODEL 111/4 ALDS

Subject Page Subject Page
ASTA operand 318-320 IFNZ 99
SAVE operand 320-321 IFP 99
SVC 321-322 IFT 99

EXTERN 95 IFUND 99
External Symbols 66 IFZ 100

EXTERN 95 IFUND 99
EXT 94-95 IFZ 100
GLINK 96 IFDEF 98
GLOBAL 96-97 IFF ... 98
LINK 101-102 IFM ... 98
PUBLIC 108-109 IFNZ 99

EXX 164-165 IFP ... 99
FILL 95-96 IFT ... 99
GLINK 96 Illegal Addressing 329
GLOBAL 96-97 IMO 214
File Transfer IM1 214-215

Set-Up 47 IM2 215
Loading 48-49 IN A,(n) 287
Errors 52 INC (HL) 201
Command File 52-53 INC IX 222-223
Connector 57 INC IV 223-224
Technical 53-56 INC (IX+ d) 201-202
Object Files 53 INC (IV+ d) 202-203

File Not Found 331 INCLUDE 100
Hit Any Key·to Continue 326 INC r 200
General purpose arithmetic and INC ss 222

CPU control groups 207-215 INCXH 337
CCF 210 IND 292-293
CPL 206-207 Index Sections 82-83
DAA 207-208 ISECT 100-101
DI 212-213 APOP 88
El 213 APUSH 88-89
HALT 212 DROP 93
IMO 214 INDR 293-294
IM1 214 INI. 289-290
IM2 215 INIR 290-292
NEG 209-210 Initializing Location Counter 72
NOP 211-212 Input and output group 287-301
SCF 211 IN A,(n) 287

Global File 78-82 IND 292-293
HALT 212 INDR 293-294
HEADER 97-98 INI 289-290
If Section 85-86 INIR 290-292

IFDEF 98 IN r,(C) 288-289
IFF 98 OUT (C),r 295-296
IFM 98 OUT (n),A 294-295

364

Subject Page
OUTD 299
OUTI 296-297
OTIR 297-298

IN r,(C) 288-289
Invalid Parameter 330
ISECT 100-101
JP cc,nn 266-267
JP (HL) 273
JP (IX) 274
JP (IV) 274-275
JP nn 265
JR C,e 268-269
JR e 267-268
JR NC,e 269
JR NZ,e 272
JR Z,e 270
Jump group 265-276

DJNZ e 275-276
JP cc,nn 266-267
JP (HL) 273
JP (IX) 274
JP (IV) 274-275
JP nn 265
JR C,e 268-269
JR e 267-268
JR NC,e 269
JR NZ,e 272
JRZ,e 270

Labels 61-62
LD A,(BC) 133
LD A,(DE) 133-134
LD A,I 137
LD A,(nn) 134-135
LDA,R 138
LD (BC),A 135
LD dd,nn 141-142
LD dd,(nn) 144-145
LD (DE),A 135-136
LD (HL),n 130-131
LD HL,(nn) 143-144
LD (HL),r 128
LD l,A 137
LD (IX+d),n 131-132
LD (IX+d),r 128-129
LD IX,nn 142
LD IX,(nn) 145-146

INDEX

Subject Page
LO (IV +d),n 132
LO (IV+ d),r 129-130
LO IY,nn 143
LO IY,(nn) 146-147
LO (nn),A 136-137
LO R,A 139-140
LO r,n 124
LO r,r' 123
LO r,(HL) 125
LO r,(IX + D) 125-126
LO r,(IV +d) 127
LO (nn),dd 148-149
LO (nn),HL. 147-148
LD (nn),IX 149-150
LO (nn),IV 150-151
LO SP,HL 151-152
LO SP,IX 152
LO SP,IV 153
LOO 172-173
LO double register 311-315
LODA 173-175
LOI 169-170
LOIA 170-172
LD r,XH 337
LO XH,r 337
LDXH,n 337
Line Length Too Long, Truncating line .. 325
Line Number Too Large 325
LINK 101-102
Linker

Command 43-44
Technical 44-45
Errors 329-330

LITORG 102-103
Location Counter 72-7 4
MACRO 103-104
Macro Editor Assembler Compatibility ... 18
Macro Sections 83-85

ENDM 94
MACRO , 103-104

Missing External Transfer Address 329
MOVD operand1,operand2,

length 315-316
MOVI operand1,operand2,

length 317-318
Multiply Defined Entry Symbol 329

365

MODEL 111/4 ALDS

Subject Page
NEG 209-210
NOEND 104
NOFILL 104
NOLOAD 105
NOP 211-212
No Text 325
Number Bases 69-70
OBJ 105
Occurrence Too Large 325
Open Attempt For a File Already Open. 331
Operands 63-67
Operators 64-67
ORG 105-106
OR s 193-195
ORXH,n 337
OTIR 297-298
OUT (C),r 295-296
OUT (n),A 294-295
OUTD 299
OUTI 296-297
overflow. 115
parity odd . 115
parity even. 115
PATCH 106
POP 318
POP IX 158-160
POP IY 160-161
POP qq 157-158
PUSH IX 155-156
PUSH IY 156-157
PUSH qq 153-154
PRINT 106-107
Program Section 75
PSECT 107-108
Pseudo Ops (see Directives)
PUBLIC. 108-109
QUIT 109
RADIX 70,109-110*
REF 110
Relocatable 72-73,75

Operators 66
RES b,m 262-263
RESLD r,n,m 336
RESLOC 110-111
RESn,m 336
RET 280-281

366

Subject Page
RET cc 281-283
RETI 283-284
RETN 284-285
AL m 236-238
AL m 335
ALA 228
RLCLD r,m 335
RLCm 335
RLC r 231-232
RLC (HL) 232-233
RLC (IX+ d) 233-234
RLC (IY +d) 234-236
ALO 249-251
RLLD r,m 335
Rotate and shift group 225

AL m 236-238
ALA 228
RLC r 231-232
RLC (HL) 232-233
RLC (IX+d) 233-234
RLC (IY +d) 234-236
ALO 249-251
RR m 240-242
ARA 230
ARC m 238-240
ARCA 229
ARD 251-252
SLA m 242-244
SRA m 245-247
SAL m 247-249

RR m 240-242
ARA 230
ARC m 238-240
ARCA 229
RRCLD r,m 335
ARD 251-252
RRLLD r,m 335
AST p 385-286
ASTA operand 318-320
Sample Session 3-9
SAVE operand 320-321
SBC A,s 189-191
SBC HL,ss 219
SBC A,XH 337
SCF 211
Search Arg Too Long 326

INDEX

Subject Page Subject Page
SET b,r 257-258 FILL 95-96
SET b,(HL) 258-259 NOFILL. 104
SET b,(IX + d) 259-260 SUBXH 337

SET b,(IY +d) 261-262
SETLOC . 111-112

Symbols
Defining 70

SETn,m 335
SETLD r,n,m 335
SLA m 242-244
SLOLD r,m 335
SRA m 245-247

External 66, 75-82
Syntax 61

Symbol Table Overflow 329
Syntax Error 326
SVC 321
TITLE 112-113

SRAm 335 TIME 112
SRALD r,m 335 Total Line Length Too Long 326
SAL m 247-249 Undefined External Symbol 329
SRLLD..,.,m 335 Undocumented 280 Instructions ... 333-337
SUB s 187-189 USING 113
TZ operand 308
XOR s 195-197
SLAm 335
SLALD r,m 335
SLOm 335
SRLm 335

VERSION 113-114
WORD (see DEFW)
XORXH 337
280

alphabetic 34 7-352
extended 303-322
hardware 353-359

STOP 112 mnemonics 115-301
Storage notations 117-118

Defining 71 numeric list 341-346
DEFS 92 undocumented 333-337

367

11/83 MP

RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM

91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE
MOUNT DRUITT, N.S.W. 2770 5140 NANINNE

U. K.

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

Printed in U.S.A.

	00.pdf
	01.pdf
	02.pdf
	03.pdf
	04.pdf
	05.pdf
	06.pdf

